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Considering shear flow of an elastico-viscous fluid past & porous flat plate, it has been found
that & steady solution for the velooity field is not possible if there is fluid injeotion at the plate
and that the vorticity in the shear flow increases the skin-friction at the plate. If the wallia ~
impermeable, the elastic elements do not affect-the velocity field. The thiokness of the
boundary layer on the plate decreases w ith the increase of relaxation time, but it increases
with the increase of retardation time. ‘ :

A problem that has recently stimulated much interest concerns the determination of
the flow field about a body that is immersed in the stream of a viscous liquid that contains
vorticity generated by some external mechanism other than the body. To study this prob-
lem in its essential features Li' introduced the idealized model of the two-dimensional,
unbounded, steady, constant shear flow of an incompressible viscous fluid past an infini-
tesimally thin, semi-infinite flat plate that is aligned parallel to the oncoming flow. This
oncoming flow is essentially the superposition, at constant pressure P, of a uniform flow
with constant velocity U upon a shear flow with a linear velocity distribution. Sakurai®
-oxtended the problem to the case of an infinite flat plate with uniform suction at the plate.
The author® solved Sakurai’s problem by replacing the viscous liquid by a Maxwellian
eslastico-viscous liquid. But Maxwell liquid is not a general relation which explains the
flow behaviour of a real elastico-viscous liquid. So in this note we have discussed the same
problem with the constitutive equation : ' ) _ , ‘
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where A, and A, are time constants, p is the static or zero shear rate viscosity. The material

time derivative

is
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where
s 1 av av; . .. -
wj = 5 [W %, ] is the vorticity ter‘xsor,_
and o
171 o j . . :
dy = *[L 2 ] is the rate of strain tensor. : ‘
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Here #;;, (reduced stress tensor) = ¢; (stress tensor) 4 pdiz, where p is a scalar pressure
and:#; is the velocity vector. This is known as Oldroyd* B liquid. ’ :
X-axis is taken along the plate and Y-axis perpendicular to it. For the flow past an:
infinite flat plate, conditions will depend on y only. Hence, the velocity field can be taken as
u=u(y); v=0v(y;w=20 ' @
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The boundary conditions of the problem are
y=0:u=0,v=v; y>o0iu~>U+ny
The velocity field (2) is compatible with the equation of continuity if

which on integration gives

v = constant = v,

v, being the constant normal velocity at the plate.

The stress-strain rate relations for the elastico-viscous liquid are reduced to
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Equatlon (7) shows that Py, = 0 is a particular solution of this, -

Hence, puttmg Pyy

Py N, dﬂ“f

dy

The momentum equations now i-educe to
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=0 in equation (6) we get
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= [ dy +’\2 o dya

Eqﬁafion 9) éhows that. —gg isa fur;ction of y,

Hence, from equation (10)

which éives the pressure distribution

where 8 is & constant.

d%u
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22-’— = oC, a constant
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Eliminating Py between (8) a,nd (9), we have
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The's(.)lutioh of this equation subject to boundary condition u=0 at y=0 is
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where A and B are constants of integration and
ml_ 9 L[ . ' : Wl o g

mz } - '27 ‘.\Kc [ ( 1 - Rc ) i{( 1 _Rc ) .+4 Kc ‘r e (14)

where :

Mov2 Aoy 2

R, = MPY%" ond K, = 2%

; B : B
Since B
| [Q—R P +4E F>(1—R),
the expression in the square bracket in (14) will have one posxtlve value and the otherh.
negative value. ; '

Now we shall study two cases:

“(4) v,<0, which corresponds to ﬂuld suctlon at the plate; and (i) v >O whlch corres,
ponds to fluid injection at the plate. '

C'ase (I) v, <0
S ) thls ‘case m, <0 and my-> 0 Flom the condition at mﬁmty we have

o
PO,

B=0, A=—Uand A =—

Hence

’”1.’/ B

u=U+ay—Us )

IfR, = Ka, the solution reduces to viscous hqmd cage,

If § is the order of boundary layer thickness, %,

{(1—R. ) + 4 K.}
— (1 — R, )] and its value for different values of R; and K, is given in Table 1, R, being
greater than K, by definition of the fluid. Table 1 shows that the boundary layer thick-

ness decreases with the increase in relaxation . time, but increases with the retardation
time. -
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The skin-friction at the plate =, is

op ‘
- = -— 'U U 16

| To- [ po, TP ] a9
which shows that the shear stress at the wall is not affected by the elasticity of the fluid but
it is not the same as in the ordinary hydrodynamic flow in the absence of vortlclty In shear
flow the skin-friction increases.

Case (II) v,> 0

In this case, m;>>0 and m,<¢0. From the condition at infinity, we have
, @ | _,

A=0,B=—Uand n=— —
PV

Hence from (13) ‘ -
| — Utny—Ue™ (17)

If R, = K, =0, which corresponds to viscous case, we obtain m, to be 1nﬁmty which
proves that in viscous case a solution is not possible if there is fluid injection at the plate,

The skin-friction at the plate r, in this case is also as given in (16). But.since there is
fluid injection at the plate, v, >0 and ., becomes negative which is clearly impossible. Hence,
the only possible case for malntammg a laminar motion is to suck out fluid at the plate.

If there is no vorticity in the onceming flow, we can put « = 0 in our equations and
the flow over a flat plate in the absence of a pressure gradient comes as particular case,

If v, = 0, 4.e., no suction is assumed equation (12), subject to the boundary conditions,
(3) ltS has only the plane Pmseculle flow as solutlon _

u=—§;— 2+)3y, 'ﬁ—-constant

- It is, therefore, interesting to note that the velocity field is affected by the elasticity of
the fluid only if the suction is present.
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