# CALCULATION OF THERMAL CONDUCTIVITY OF POLYATOMIC GAS MIXTURES AT HIGH TEMPERATURES

# G. P. GUPTA AND S. C. SAXENA

University of Rajasthan, Jaipur (Received 27 January 1966)

Reliable methods for prediction of thermal conductivity at high temperatures are very useful for a variety of important practical needs. Three different methods (i) approximate (ii) semitheoretical and (iii) empirical have been investigated. The success of these procedures is demonstrated by actual computation for a large number of systems at temperatures and compositions where direct measurements are available. These procedures are valuable as the rigorous theory besides being complicated requires a large amount of input information and even then leads to unreliable values.

The theory of thermal conduction in polyatomic gases and gas mixtures is very little understood at the moment. Hirschfelder made the first significant contribution in this direction and developed a semiclassical theory for pure gases1 as well as multicomponent mixtures<sup>2</sup>. The theory for mixtures being complicated has been simplified by Mason and Saxena<sup>3</sup> under well defined approximations. The theory for pure gases has also been given by Mason and Monchick<sup>4</sup> who based the development on the kinetic theory expression of polyatomic gases. Saxena, et al<sup>5</sup>. improved the theory of Hirschfelder<sup>1</sup> by taking into account the translational-internal energy exchange. For mixtures also Monchick, et al<sup>6</sup> have developed a formal kinetic theory but the results are not in a form where they may be used for actual calculations. Saxena, et al<sup>7</sup> have consequently improved the Hirschfelder's expression<sup>2</sup> for mixtures in the same way as for pure gases. The calculations on all these theories 4,5,7 require a large amount of information which is not always available. Therefore simpler relations with even moderate reliance will be of great value for a vast number of practical needs of design engineers. Three different methods are discussed here and then their worth assessed by applying them for a large number of systems where directly measured values are available. This work will thus enable further prediction at higher temperatures with some idea of their reliability.

#### METHODS

Approximate method—Mason & Saxena<sup>3</sup> have shown that the coefficient of thermal conductivity  $\lambda_{mix}$  of a *n*-component system is given by

$$\lambda_{mix} = \sum_{i=1}^{n} \lambda_{i} \left[ 1 + \sum_{\substack{j=1\\j \neq i}}^{n} \varphi_{ij} \frac{x_{j}}{x_{i}} \right]^{-1}$$

$$(1)$$

Here  $\lambda_i$  is the thermal conductivity of the pure *i* th component,  $x_i$  is the mole fraction of the *i*th component and  $\varphi_{ij}$  is defined as

$$\varphi_{ij} = \frac{1 \cdot 065}{2\sqrt{2}} \left( 1 + \frac{M_i}{M_j} \right)^{-\frac{1}{2}} \left[ 1 + \left( \frac{\lambda^{\circ}_i}{\lambda^{\circ}_j} \right)^{\frac{1}{2}} \left( \frac{M_i}{M_j} \right)^{\frac{1}{2}} \right]^2 \tag{2}$$

Further  $M_i$  is the molecular weight of the *i*th component and  $\lambda^{\circ}_{i}$  is its value of thermal conductivity with internal degree frozen. Values of  $\lambda_{min}$  obtained on the basis of (1) and (2) are referred to as approximate.

Semi-theoretical—In the above procedure some loss of accuracy is due to the various approximations made in deriving the explicit expression for  $\varphi_{ij}$ . This can be partly compensated if one value of  $\lambda_{mix}$  is known so that it is possible to dispense with the detailed form of relation (2) for  $\varphi_{ij}$ . Based on equation (2), Mathur & Saxena have shown that

$$\frac{\varphi_{ij}}{\varphi_{ji}} = \frac{\lambda^{\circ}_{i}}{\lambda^{\circ}_{j}} = \frac{\eta_{i} M_{j}}{\eta_{j} M_{i}}$$
 (3)

 $\eta$  being the coefficient of viscosity. Thus the two constants  $\varphi_{12}$  and  $\varphi_{21}$  can be easily determined from (1) and (3) if one value of  $\lambda_{mix}$  is also known. This computation procedure, which is designated as semi-theoretical, is likely to yield good results as  $\varphi_{ij}$  values thus get adjusted through the use of one value of  $\lambda_{mix}$ . The only disadvantage is the requirement of a mixture conductivity value, but this is more than compensated by the enhancement in the accuracy, both in correlation of  $\lambda_{mix}$  data over the entire composition range and also for prediction at high temperatures.

Empirical—Further, if binary  $\lambda_{mix}$  values be known at two compositions then both the constants  $\varphi_{12}$  and  $\varphi_{21}$  of (1) can be directly determined by treating them as disposable parameters. Off hand this procedure should yield the maximum accuracy for reasons mentioned above. This empirical method introduced by Srivastava & Saxena<sup>8</sup> will also be studied.

Here a mention of the Hirschfelder's expression is made for  $\lambda_{mix}$  according to which

$$\lambda_{mix} = \lambda^{\circ}_{mix} + \sum_{\substack{j=1\\j\neq i}}^{n} \frac{\lambda_{i} - \lambda^{\circ}_{i}}{1 + \sum_{\substack{j=1\\j\neq i}}^{n} \frac{x_{j}}{x_{i}} \cdot \frac{D_{ii}}{D_{ij}}}$$

$$(4)$$

Here  $\lambda^{\circ}_{mix}$  is the conductivity of the mixture with frozen internal degrees of freedom,  $D_{ii}$  and  $D_{ij}$  are the values of the self and mutual diffusion coefficients respectively. The improved expression for  $\lambda_{mix}$  as given by Saxena *et al*<sup>7</sup> is as follows:

$$\lambda_{mix} = \lambda^{\circ}_{mix} + \sum_{i=1}^{n} [D_{i}]_{mix} [C'_{i}]_{mix} - \lambda^{\circ}_{mix} \sum_{i=1}^{v} \frac{C_{i}]_{mix}}{[C_{vi}]_{mix}} \times \left\{ 1 - exp\left(-\frac{1}{[Z_{i}]_{mix}} \frac{[C_{vi}]_{mix}}{C_{vtr}}\right)\right\} + C_{vtr} \sum_{i=1}^{n} n [D_{i}]_{mix} \frac{[C'_{i}]_{mix}}{[C_{vi}]_{mix}} \times \left\{ 1 - exp\left(-\frac{1}{[Z_{i}]_{mix}} \frac{[C_{vi}]_{mix}}{C_{vtr}}\right)\right\}$$

$$(5)$$

Here the various terms are as defined by them<sup>7</sup>. It is important to note here that the first two terms of (5) are same as (4) while the remaining two terms appear as correction when translational -internal energy exchange is considered. Relation of (5) is much more complicated than that of (4) but the contribution of correction terms is appreciable in many actual systems<sup>7</sup>.

## EXPERIMENTAL DATA

Recently Mathur & Saxena have considered the  $\lambda_{mix}$  data of a large number of binary and a few ternary systems. These systems are relatively simpler in the sense that most of the binary combinations included a rare gas and a simple diatomic gas viz, hydrogen, oxygen

or nitrogen. They also considered combinations with methane and carbon dioxide. It is proposed to study systems which are more complicated in as much as these involve polyatomic molecules containing many internal degrees of freedom. Obviously, even the application of rigorous theory is not possible for such systems due to the lack of knowledge about the various fundamental constants like Z etc. For practical needs such systems are relatively more important and investigation is to be made for the prospect of utilising the methods mentioned under 'Methods' to predict and correlate the  $\lambda_{mix}$  values particularly where direct measured values are not available. The  $\lambda_{mix}$  data of the fourteen binary systems considered here have been plotted to check their relative consistency. In all cases except  $N_2 - N_2 O$ ,  $NO - N_2 O$  and  $O_2 - N_2 O$ , the data were found to be smooth and therefore the directly reported values have been used as such. Even for these three systems where the observed points differ from the smooth curve by a couple of per cent on the average and record have been made of the direct observed values. The experimental data of binary mixtures as well as of the related pure components are of Cheung, et al<sup>9</sup>. for  $O_2$ — $CO_3$ He— $CO_2$  (316°C),  $CH_4$ — $C_3H_8$ ,  $CO_2$ — $C_3H_8$ , He— $CH_4$  and  $N_2$ — $O_2$ ; Weber¹0 for  $H_2$ — $CO_2$  (0°C); Kornfeld & Hilferding¹¹ for  $H_2$ — $CO_2$  (25°C) and  $H_2$ — $C_2H_4$ ; Davidson & Music¹² for He— $CO_2$  (0°C); Ibbs & Hirst¹³ for  $H_2$ — $N_2O$  and  $N_2$ — $N_2$ 0 and  $N_3$ — $N_2$ 0. Rothman¹⁵ for  $N_2$ — $N_3$ 0 and  $N_3$ 0. Rothman¹⁵ for  $N_3$ — $N_3$ 0 and  $N_3$ 0. Rothman¹⁵ for  $N_3$ — $N_3$ 0 and  $N_3$ 0 and  $N_3$ 0. Rothman¹⁵ for  $N_3$ 0 and  $N_3$ 0 and  $N_3$ 0 and  $N_3$ 0. Rothman¹⁵ for  $N_3$ 0 and  $N_3$ 0  $O_2$ - $N_2O$  and NO- $N_2O$ . Pure viscosity data were read from the smooth plets of viscosity versus temperature. All the available information was pooled for this purpose. The values employed in the calculations are recorded in Table 1 where the pure  $\lambda$  data are also indicated together with the temperature to which these refer. In Table 2 likewise are listed the  $\lambda_{mix}$ data as a function of composition at the appropriate temperature. For each system  $\lambda_{mix}$ values at lowest temperature are recorded in Table 2, while in Table 4 are listed the values for those systems only where  $\lambda_{mix}$  data also exist at higher temperatures.

Table 1 Experimental  $\lambda$  (cal cm<sup>-1</sup> sec<sup>-1</sup> deg<sup>-1</sup>) and  $\eta$  (gm cm<sup>-1</sup> sec<sup>-1</sup>) data used in computation of  $\phi_{ij}$  and  $\lambda mix$ 

|      |                                        |                                                                                   |                                                      |                                                      | and the second                                        |
|------|----------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
|      | ************************************** | $\lambda_1 	imes 10^5$                                                            | $\lambda_2 	imes 10^5$                               | $\eta_1 	imes 10^5$                                  | $\eta_2\!	imes\!10^5$                                 |
| **** | 316                                    | 20 · 29                                                                           | 55.6                                                 | 18.95                                                | 31.50                                                 |
| •    | 0,                                     | 3 · 39                                                                            | 33.21                                                | 13.60                                                | 18.55                                                 |
|      | . 0                                    | 3.393                                                                             | 41.63                                                | $13 \cdot 60$                                        | 8.40                                                  |
|      |                                        | 5· <b>3</b>                                                                       | 40.4                                                 | 16.50                                                | 8.40                                                  |
|      | 0                                      | 3.8                                                                               | 40.4                                                 | 13.58*                                               | 8.54*                                                 |
| •    | 25                                     | 5.27                                                                              | 43.7                                                 | 10.26                                                | 8.90                                                  |
|      | 319                                    | 11.62                                                                             | 10.70                                                | 33.90                                                | 28.90                                                 |
|      | 97                                     | 5.218                                                                             | 7.66                                                 | 18.15                                                | 24 · 30                                               |
|      | 31.85                                  | 4.55                                                                              | 6.58                                                 | 15.07                                                | 20.95                                                 |
| 1.5  | 50                                     | $4 \cdot 34$                                                                      | $6 \cdot 64$                                         | $15 \cdot 95$                                        | 18.05                                                 |
|      | $31 \cdot 85$                          | 4.55                                                                              | $6 \cdot 33$                                         | $15 \cdot 07$                                        | 20.95                                                 |
|      | 50.55                                  | $4 \cdot 72$                                                                      | 6.77                                                 | $15 \cdot 97$                                        | 20.47                                                 |
|      | 95                                     | 6.344                                                                             | 10.49                                                | $9 \cdot 875$                                        | 13 · 15                                               |
|      | 95                                     | $6 \cdot 344$                                                                     | 5.181                                                | 9.875                                                | 18.10                                                 |
|      |                                        | 316<br>0<br>0<br>0<br>0<br>25<br>319<br>97<br>31.85<br>50<br>31.85<br>50<br>50.55 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Note—Subscript 1 refers to the heavier component.

<sup>\*</sup>Trautz, M. & Kurz, F. Ann. Physik, 9 (1931), 981.

Comparison of experimental and calculated  $\lambda_{mix}$  (cal cm<sup>-1</sup> sec<sup>-1</sup> deg<sup>-1</sup>) values. X<sub>1</sub> is the mole fraction of the heavier component

| He—CH <sub>4</sub> (316°C)  He—CO <sub>2</sub> (0°C)  H <sub>2</sub> —CO <sub>2</sub>                  | 0·254<br>0·450<br>0·701<br>0·26<br>0·48<br>0·75<br>0·057  | 40·63<br>30·54<br>24·53<br>17·83<br>11·20                             | 38·32<br>30·97<br>24·93<br>16·57                        | -5.7 + 1.1 + 1.6                                      | 37.82                                                    | -6.9                                                    |                     | <del></del>      |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------|------------------|
| $egin{aligned} \mathbf{He-CO_2} \ (0^\circ\mathbf{C}) \end{aligned}$ $\mathbf{H_2-CO_2} \end{aligned}$ | 0·701<br>0·26<br>0·48<br>0·75<br>0·057                    | $24 \cdot 53$ $17 \cdot 83$ $11 \cdot 20$                             | $24 \cdot 93$                                           |                                                       |                                                          |                                                         | 30.36               | -0.6             |
| (0°C)<br>H <sub>2</sub> —CO <sub>2</sub>                                                               | 0·48<br>0·75<br>0·057                                     | 11.20                                                                 | $16 \cdot 57$                                           | +1.6                                                  | 24.69                                                    | +0.7                                                    | 30.30               | 0.0              |
| $\mathbf{H_2}$ — $\mathbf{CO_2}$                                                                       | $\begin{array}{c} 0.75 \\ 0.057 \end{array}$              |                                                                       |                                                         | 7·1                                                   | 17.80                                                    | -0.2                                                    |                     | ••               |
|                                                                                                        | 0.057                                                     | $6 \cdot 35$                                                          | $\substack{10\cdot 29 \\ 5\cdot 92}$                    | $-8.1 \\ -6.8$                                        | $6 \cdot 32$                                             | 0.5                                                     | 11.25               | +0.4             |
|                                                                                                        | 0 30-4                                                    | 35.90                                                                 | $36 \cdot 51$                                           | +1.7                                                  | 36.3                                                     | $+1 \cdot 1$                                            | <b>36</b> ·25       | +1.0             |
| (0°C)                                                                                                  | $0.1654 \\ 0.3932$                                        | $28.00 \\ 17.24$                                                      | $\begin{array}{c} 28\cdot 69 \\ 17\cdot 61 \end{array}$ | $^{+2.5}_{+2.1}$                                      | 28 · 3                                                   | $+1\cdot 1$                                             | $17 \cdot 24$       |                  |
|                                                                                                        | 0.6302                                                    | 10.34                                                                 | $10 \cdot 26$                                           | -0.8                                                  | 10.16                                                    | -1.7                                                    | 10.18               | $+0.0 \\ -1.5$   |
| ****                                                                                                   | 0.8299                                                    | 6.07                                                                  | 6.16                                                    | +1.5                                                  | 6.06                                                     | -0.2                                                    | 4.00                |                  |
| (x,y) = (x,y)                                                                                          | $0.906 \\ 0.9247$                                         | $egin{array}{c} 4 \cdot 77 \ 4 \cdot 48 \end{array}$                  | 4.85 $4.54$                                             | $\begin{array}{c} +1\cdot 7 \\ +1\cdot 3 \end{array}$ | 4·79<br>4·50                                             | $^{+0\cdot 4}_{+0\cdot 4}$                              | $\frac{4.80}{4.50}$ | $^{+0.6}_{+0.4}$ |
| H <sub>2</sub> —CC                                                                                     | 0.206                                                     | 27.0                                                                  | 27.5                                                    | +1.9                                                  | 26.9                                                     | -0.4                                                    | 27.9                | +3.3             |
| (0 <sup>5</sup> C)                                                                                     | $0.366 \\ 0.434$                                          | $20 \cdot 9$ $18 \cdot 0$                                             | $\begin{array}{c} 20\cdot 5 \\ 18\cdot 1 \end{array}$   | $-1.9 \\ +0.6$                                        | 19.9                                                     | <b>4</b> ⋅8                                             | 10.1                |                  |
|                                                                                                        | $0.434 \\ 0.728$                                          | 10.3                                                                  | $10 \cdot 2$                                            | -1.0                                                  | 10.0                                                     | <b>—3</b> ·0                                            | 18·1                | +0.6             |
|                                                                                                        | 0.837                                                     | 8.0                                                                   | 8.0                                                     | +0.0                                                  | $7 \cdot 9$                                              | -1.3                                                    | 8.1                 | +1.3             |
| $\mathbf{H_2}$ — $\mathbf{N_2}\mathbf{O}$<br>(0°C)                                                     | $0.188 \\ 0.401$                                          | $\begin{array}{c} 27\cdot 2 \\ 17\cdot 0 \end{array}$                 | $\begin{array}{c} 26\cdot 7 \\ 17\cdot 1 \end{array}$   | $-1.8 \\ +0.6$                                        | $26 \cdot 6$                                             | -2.2                                                    | 26.8                | -1.5             |
| (0 0)                                                                                                  | 0.614                                                     | $10 \cdot 7$                                                          | $10 \cdot 9$                                            | +1.9                                                  | 10.8                                                     | +0.9                                                    | 10.8                | +0.9             |
|                                                                                                        | 0.791                                                     | 7.1                                                                   | 7.1                                                     | +0.0                                                  | 7.1                                                      | +0.0                                                    | ••                  | • •              |
| $^{ m H_2-\!\!\!\!\!-C_2H_4}_{ m 25^{\circ}C)}$                                                        | $0.1351 \\ 0.389$                                         | $\begin{array}{c} 32 \cdot 9 \\ 20 \cdot 6 \end{array}$               | $\begin{array}{c} 32 \cdot 3 \\ 19 \cdot 4 \end{array}$ | -1·8<br>-5·8                                          | $33 \cdot 3$ $20 \cdot 4$                                | $^{+1\cdot 2}_{-1\cdot 0}$                              | $33 \cdot 4$        | +1.5             |
| 20 ()                                                                                                  | 0.4863                                                    | 16.90                                                                 | 16.04                                                   | $-5 \cdot 1$                                          | ••                                                       | • •                                                     | $17\cdot\dot{12}$   | +1.3             |
|                                                                                                        | $0.686 \\ 0.8302$                                         | $\begin{array}{c} 11 \cdot 48 \\ 8 \cdot 61 \end{array}$              | $\begin{array}{c} 10.81 \\ 7.95 \end{array}$            | $-5.8 \\ -7.7$                                        | $\begin{array}{c} 11 \cdot 33 \\ 8 \cdot 23 \end{array}$ | $\begin{array}{l} -1 \cdot 3 \\ -4 \cdot 4 \end{array}$ | 8.31                | <u>-3.5</u>      |
| O <sub>2</sub> —N <sub>2</sub><br>3 1 9°C)                                                             | 0.6098                                                    | 11.19                                                                 | 10.93                                                   | $-2 \cdot 3$                                          | 11.24                                                    | +0.4                                                    | 11.37               | +1.6             |
| 5 <sub>2</sub> —CO <sub>2</sub>                                                                        | 0.222                                                     | 7.027                                                                 | $6 \cdot 799$                                           | -3.2                                                  | 7.013                                                    | -0.2                                                    | 7.019               | -0.1             |
| (97°C)                                                                                                 | $0.464 \\ 0.685$                                          | 6.383 $5.883$                                                         | 6·120<br>5·669                                          | $-4 \cdot 1 \\ -3 \cdot 8$                            | 5.868                                                    | -0.3                                                    | E 076               | 0.1              |
|                                                                                                        | 0.73                                                      | 5.777                                                                 | 5.591                                                   | $-3.3 \\ -3.2$                                        | 5.770                                                    | -0.3<br>-0.1                                            | 5.876               | -0.1             |
| $O_2$ — $N_2O$                                                                                         | 0.155                                                     | $6 \cdot 21$                                                          | 6.04                                                    | -2.7                                                  | $6 \cdot 25$                                             | +0.6                                                    | $6 \cdot 20$        | -0.2             |
| (31·85°C)                                                                                              | $0.331 \\ 0.544$                                          | $\begin{array}{c} \mathbf{5\cdot55} \\ \mathbf{5\cdot43} \end{array}$ | $5 \cdot 56 \\ 5 \cdot 13$                              | $^{+0\cdot 2}_{+1\cdot 8}$                            | 5.87                                                     | +5.8                                                    | 5.28                | -2.8             |
|                                                                                                        | 0.725                                                     | 4.95                                                                  | 4.85                                                    | -2.0                                                  | 5.07                                                     | $+2\cdot 4$                                             | 0.20                | 2-0              |
| $N_2$ — $CO_2$                                                                                         | 0.335                                                     | 5.67                                                                  | 5.55                                                    | $-2 \cdot 1$                                          | $5 \cdot 69$                                             | +0.4                                                    | ::                  | • •              |
| (50°C)                                                                                                 | $0.4712 \\ 0.6594$                                        | $\begin{matrix} 5 \cdot 37 \\ 4 \cdot 99 \end{matrix}$                | $5 \cdot 22 \\ 4 \cdot 84$                              | $-2.8 \\ -3.0$                                        | 4.96                                                     | -0.6                                                    | 5.41                | +0.7             |
| $N_2$ — $N_2$ O                                                                                        | 0.142                                                     | $5 \cdot 77$                                                          | 5.90                                                    | $+2 \cdot 3$                                          | 5.71                                                     | -1.0                                                    | 5·89                | +2.0             |
| (31·85°C)                                                                                              | 0.408                                                     | 5.26                                                                  | 5.30                                                    | +0.8                                                  | 4.97                                                     | $-5\cdot 5$                                             |                     |                  |
|                                                                                                        | $\begin{array}{c} 0.562 \\ 0.758 \end{array}$             | $egin{array}{c} \mathbf{4\cdot 75} \\ \mathbf{4\cdot 73} \end{array}$ | $\frac{5 \cdot 04}{4 \cdot 78}$                         | $^{+6\cdot 1}_{+1\cdot 1}$                            | 4.59                                                     | -3.0                                                    | 4.98                | +4.8             |
|                                                                                                        | 0.766                                                     | 4.69                                                                  | 4.78                                                    | +1.9                                                  | 4 59                                                     | $-2\cdot 1$                                             | $4\cdot 72$         | +0.6             |
| NON <sub>2</sub> O                                                                                     | 0.271                                                     | 5·41<br>5·77                                                          | $\begin{array}{c} 5.91 \\ 5.49 \end{array}$             | +9.3 $-4.9$                                           | 6.16                                                     | +13.9                                                   | $6 \cdot 23$        | $+15 \cdot 1$    |
| (50·55°C)                                                                                              | 0.455 $0.672$                                             | $5 \cdot 28$                                                          | 5·49<br>5·11                                            | -3.2                                                  | 5 33                                                     | +0.9                                                    | 5.40                | $+2\cdot3$       |
|                                                                                                        | 0.767                                                     | 5.26                                                                  | 4.98                                                    | <b>-4</b> ·2                                          | $5 \cdot 15$                                             | -1.0                                                    | •                   |                  |
| C <sub>3</sub> H <sub>8</sub> —CH <sub>4</sub>                                                         | $\begin{array}{c} 0 \cdot 221 \\ 0 \cdot 514 \end{array}$ | $8.841 \\ 7.636$                                                      | 8 · 85<br>7 · 564                                       | $+0.4 \\ -0.9$                                        | 8.964                                                    | $+1\cdot 4$                                             | 7 60-               | ^ ^              |
| (95°C)                                                                                                 | 0.687                                                     | 7.083                                                                 | $7 \cdot 035$                                           | $-0.5 \\ -0.7$                                        | 7.096                                                    | +0.2                                                    | 7·635               | -0.0             |
| $C_3H_8$ — $CO_2$                                                                                      | 0.365                                                     | 5.715                                                                 | 5.447                                                   | -4.7                                                  | 5.666                                                    | -0.9                                                    |                     | •                |
| (95°Č)                                                                                                 | $0.551 \\ 0.709$                                          | $5.884 \\ 6.083$                                                      | $5.675 \\ 5.896$                                        | -3·6<br>-3·1                                          | $6 \cdot 056$                                            | -0.4                                                    | 5.911               | +0.5             |

## CALCULATION OF THERMAL CONDUCTIVITY

The procedures of calculating thermal conductivity have already been outlined under 'Methods'. The results obtained on the different systems are reported here. The values of  $\lambda_{mix}$ , according to (1) and (2) are listed in column 4 of Table 2. The experimental values of  $\lambda_{mix}$  and the percentage deviation between the experimental and calculated values are also recorded in columns 3 and 5 of Table 2 respectively. The factor  $(\lambda^{\circ}_{i} / \lambda^{\circ}_{j})$  of (2) was computed from (3) using the viscosity data. The semi-theoretical calculated values are reported in column 6 of Table 2 and are based on (1) and (3). The  $\lambda_{mix}$  value invariably around the middle composition was employed in this calculation. The percentage deviation of the semi-theoretical values from the experimental values are reported in column 7 of this very Table. Lastly, the computed  $\lambda_{mix}$  values, according to the empirical method, are given in column 8 and their percentage deviation from the experimental values in column 9. A remark regarding this method of calculation is relevant. As the equations giving  $\varphi_{12}$  and  $\varphi_{21}$  become quadratic, we get two sets of coupled  $\varphi_{ij}$  values but on the basis of the reproduction of  $\lambda_{mix}$  values, it is always possible to select one set which gives better agreement with experiment. The  $\varphi_{ij}$  values obtained according to the approximate, empirical and semitheoretical procedures are recorded in Table 3.

There are reasons to believe that  $\varphi_{ij}$  values are very weakly dependent upon temperature and composition. We employ this fact to compute  $\lambda_{mix}$  at higher temperatures. Out of the fourteen gas pairs given in Table 3, there are rix pairs for which experimental  $\lambda_{mix}$  values are also available at higher temperatures. These systems are reported only in Table 4 and experimental as well as calculated values according to all the three procedures are reported along with the percentage deviations in all cases.

For a few systems the  $\lambda_{mix}$  values are also computed on the basis of the expression of Hirschfelder, equation (4), and these are recorded in Table 5. These calculations are, according to the Lennard-Jones (12-6), potential using parameters as given by Hirschfelder Curtiss & Bird<sup>18</sup> (first set). The expression for  $\lambda^{\circ}_{mix}$  employed is that of Muckenfuss & Curtiss<sup>19</sup> as modified by Mason & Saxena<sup>20</sup>.

Lastly, in Table 6 the thermal conductivity values for the ternary system  $N_2 - O_2 - CO_2$  are reported. The  $\varphi_{ij}$  needed in this calculation were computed at 97°C for  $O_2 - CO_2$ ,

Table 3 Various computed  $\phi_{ij}$  values

|                                                   |                 | Appro                  | ximate          | Em                     | pirical                        | Semi-th      | eoretical     |
|---------------------------------------------------|-----------------|------------------------|-----------------|------------------------|--------------------------------|--------------|---------------|
| Gas Pair                                          | ${}^t\circ_C$ — | <b>ф</b> <sub>12</sub> | <b>\$</b> _{21} | $oldsymbol{\phi}_{22}$ | $\phi_{\scriptscriptstyle 21}$ | <b>\$</b> 12 | $\phi_{21}$   |
| Ie —CH <sub>4</sub>                               | <b>3</b> 16     | 0.4035                 | 2.687           | 0 · 1035               | 4.280                          | 0.4141       | 2.759         |
| Ie —CO,                                           | 0               | $0 \cdot 2352$         | $3 \cdot 657$   | 0.3246                 | $3 \cdot 031$                  | 0.2125       | 3.178         |
| $\mathbf{H}_{2}$ — $\mathbf{CO}_{2}$              | 0               | 0.1988                 | $2 \cdot 736$   | 0.2868                 | $2 \cdot 770$                  | 0.2102       | 2.834         |
| I, —CO                                            | 0               | 0.7259                 | $2 \cdot 121$   | 0.1556                 | $2 \cdot 479$                  | 0 3504       | $2 \cdot 478$ |
| $\mathbf{H}_{2}^{2}$ — $\mathbf{N}_{2}\mathbf{O}$ | 0               | 0.1975                 | 2.768           | 0.1110                 | $2 \cdot 868$                  | 0.2032       | 2.790         |
| $\mathbf{H}_{2}$ — $\mathbf{C}_{2}\mathbf{H}_{4}$ | 25              | $0 \cdot 2360$         | $2 \cdot 849$   | 0.2918                 | $2 \cdot 471$                  | 0.2158       | 2.605         |
| $N_2 - N_2$                                       | 319             | 1.0790                 | 1.050           | 0.6805                 | $1 \cdot 449$                  | 1.0170       | 0.990         |
| $\mathbf{CO_2}$ — $\mathbf{CO_2}$                 | 97              | 0.7898                 | 1.454           | 0.7695                 | $1 \cdot 282$                  | 0.7273       | 1.339         |
| $N_2 - N_2 \tilde{O}$                             | 31.85           | 0.7764                 | $1 \cdot 486$   | 0.3480                 | $2 \cdot 302$                  | 0.6924       | 1.324         |
| $ \mathbf{V}_{2}^{'}  \mathbf{CO}_{2} $           | 50              | 0.7803                 | $1 \cdot 445$   | 0.5880                 | 1.549                          | 0.7376       | 1.366         |
| $N_2^2 - N_2 \tilde{O}$                           | $31 \cdot 85$   | 0.7737                 | 1.460           | 1.072                  | $1 \cdot 192$                  | 0.8711       | 1.639         |
| 0°N— ON                                           | $50 \cdot 55$   | 0.7790                 | 1.465           | 0.7295                 | $1 \cdot 235$                  | 0.7056       | 1.327         |
| C <sub>3</sub> H <sub>8</sub> —CH₄                | 95              | 0.5443                 | 1.993           | 0.3874                 | $2 \cdot 370$                  | 0.5318       | 1.947         |
| H <sub>8</sub> —CO <sub>2</sub>                   | 95              | 0.8041                 | 1.477           | 0.7432                 | 1.316                          | 0.7442       | 1.367         |

Table 4 Comparison of experimental and calculated  $\lambda_{mix}$  values using  $\phi_{ij}$  values of a lower temperature

| Gas Pair and<br>Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X <sub>1</sub>                                        | Exptl.                                                  | Approx.                                                 | %Dev.                      | Semi-<br>theoret.                                       | %Dev.                      | Empir.                                                  | %Dev                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------|---------------------------------------------------------|----------------------------|---------------------------------------------------------|----------------------------|
| <b>U</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)                                                   | $(2)$ $55 \cdot 6$                                      | (3)                                                     | (4)                        | (5)                                                     | (6)                        | (7)                                                     | (8)                        |
| He—CO <sub>2</sub> (316°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.39 \\ 0.39 \end{array}$           | 55 · 6<br>23 · 65                                       | 00 00                                                   | 1.0.0                      | 25.                                                     |                            | • •                                                     |                            |
| (010 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                  | 9.58                                                    | 23 · 66                                                 | +0.0                       | 25.53                                                   | $+7\cdot9$                 | $25 \cdot 27$                                           | +6.8                       |
| $\mathbf{H_2}$ — $\mathbf{CO_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                  | 43.7                                                    | •                                                       | ••                         | • •                                                     | • •                        | ••                                                      | • •                        |
| (25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0362                                                | 40 2                                                    | 40.3                                                    | +0.2                       | $40 \cdot 1$                                            | -0.2                       | 40.1                                                    | $-0.\overline{2}$          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0941                                                | 35.0                                                    | $35 \cdot 4$                                            | $+1\cdot 1$                | 35·1                                                    | +0.3                       | 35.0                                                    | $-0.5 \\ +0.0$             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.504                                                 | $15 \cdot 13$                                           | $14 \cdot 97$                                           | -1.1                       | 14.64                                                   | $-3\cdot2$                 | 14.64                                                   | -3.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.807                                                 | 7.58                                                    | $7 \cdot 41$                                            | $-2 \cdot 2$               | $7 \cdot 29$                                            | $-5\cdot 2$                | $7 \cdot 29$                                            | -5.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.953 \\ 1.00$                                       | $4 \cdot 43 \\ 4 \cdot 08$                              | 4.81                                                    | $+8\cdot6$                 | $4 \cdot 68$                                            | +5.6                       | 4.79                                                    | $+8\cdot 1$                |
| $O_2$ — $N_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                  | 6.58                                                    | • •                                                     | ••                         | • • •                                                   | ••                         | • •                                                     |                            |
| (50·55°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.169                                                 | 6.51                                                    | $6 \cdot 19$                                            | -4.9                       | 6.41                                                    | • :                        | 0.00                                                    |                            |
| (00 00 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35                                                  | $6 \cdot 13$                                            | 5.70                                                    | $-4.9 \\ -7.0$             | $\begin{array}{c} 6 \cdot 41 \\ 6 \cdot 02 \end{array}$ | $-1.5 \\ -1.8$             | 6.36                                                    | -2.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.481                                                 | $6 \cdot 30$                                            | $5 \cdot 42$                                            | 13·9                       | $5 \cdot 75$                                            | $-1.3 \\ -8.7$             | $\begin{array}{c} 5 \cdot 89 \\ 5 \cdot 60 \end{array}$ | $-3.9 \\ -11.1$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.623                                                 | $5 \cdot 83$                                            | 5.17                                                    | $-11 \cdot 1$              | 5.45                                                    | -6.5                       | 5.31                                                    | -8.9                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.775                                                 | 5.00                                                    | 4.96                                                    | -0.8                       | $5 \cdot 15$                                            | +3.0                       | 5.05                                                    | +1.0                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.874 \\ 1.00$                                       | 4.99                                                    | 4.84                                                    | $-3\cdot0$                 | $4 \cdot 96$                                            | <b>—0·6</b>                | 4.89                                                    | $-2 \cdot 0$               |
| N N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                  | 4.72                                                    | • •                                                     | . • •                      | ••                                                      | • • •                      |                                                         | • • • • •                  |
| $ m O_2-N_2O$<br>101°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.00 \\ 0.231$                                       | $\begin{array}{c} 7 \cdot 69 \\ 7 \cdot 01 \end{array}$ | $6 \cdot 93$                                            | •••                        | _ ::                                                    |                            | ••                                                      | • •                        |
| 101 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.241                                                 | 6.99                                                    | 6.90                                                    | $-1 \cdot 1 \\ -1 \cdot 3$ | 7.25                                                    | +3.4                       | $7 \cdot 22$                                            | +3.0                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.382                                                 | $6 \cdot 75$                                            | 6.57                                                    | -2.7                       | $\begin{array}{c} 7 \cdot 21 \\ 6 \cdot 96 \end{array}$ | $^{+3\cdot 1}_{+3\cdot 1}$ | 7.20                                                    | +3.0                       |
| والمراجع المراجع والمراجع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.549                                                 | $6 \cdot 41$                                            | $6 \cdot 27$                                            | $-2 \cdot 2$               | $6 \cdot 63$                                            | $^{+3\cdot1}_{+3\cdot4}$   | $\begin{array}{c} 6 \cdot 87 \\ 6 \cdot 52 \end{array}$ | $^{+1\cdot 8}_{+1\cdot 7}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.699                                                 | $6 \cdot 01$                                            | $6 \cdot 06$                                            | +0.8                       | $6 \cdot 34$                                            | +5.5                       | 6.24                                                    | +3.8                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.723                                                 | 5.94                                                    | 6.03                                                    | +1.5                       | 6.29                                                    | $+7 \cdot 1$               | 6.20                                                    | +4.4                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                  | $5 \cdot 78$                                            | • •                                                     | * * • •                    | ••                                                      | ••                         | ••                                                      | ••                         |
| $N_2 - N_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                  | $8 \cdot 33$                                            | _ ::                                                    | ••                         | • •                                                     |                            | ·                                                       |                            |
| 140·2°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0\cdot232 \\ 0\cdot306 \end{array}$ | 7.51                                                    | 7.52                                                    | +0.1                       | 7.87                                                    | +4.8                       | $7 \cdot 85$                                            | +4.5                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0:495                                                 | $\begin{matrix} 7 \cdot 39 \\ 6 \cdot 99 \end{matrix}$  | $\begin{matrix} 7 \cdot 32 \\ 6 \cdot 92 \end{matrix}$  | -0.9                       | $7 \cdot 72$                                            | +4.5                       | 7.60                                                    | +2.8                       |
| 1 × 2 × 1 × 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.796                                                 | 6.38                                                    | 6.50                                                    | $-1.0 \\ +1.9$             | $\begin{matrix} 7 \cdot 33 \\ 6 \cdot 72 \end{matrix}$  | $^{+4\cdot 9}_{+5\cdot 3}$ | $\begin{array}{c} 7 \cdot 22 \\ 6 \cdot 64 \end{array}$ | +3.6                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                  | $6 \cdot 32$                                            | •••                                                     | T 1 0                      | 0.12                                                    | +9.9                       | 0.04                                                    | +4.1                       |
| $N_2$ — $N_3$ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                  | 9.09                                                    |                                                         |                            | •                                                       | •                          |                                                         | ••                         |
| (80 · 1°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.286                                                 | 8.10                                                    | 8·11                                                    | +0.1                       | $8 \cdot 53$                                            | +5.3                       | $8\cdot 52$                                             | +5.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0 \cdot 40$                                          | $8 \cdot 03$                                            | $7 \cdot 84$                                            | $-2\cdot 4$                | 8.30                                                    | $+3\cdot 4$                | 8 24                                                    | +2.6                       |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.635                                                 | $7 \cdot 14$                                            | $7 \cdot 43$                                            | $+4\cdot 1$                | $7 \cdot 82$                                            | $+9\cdot 5$                | $7 \cdot 54$                                            | $+6.\overset{\circ}{2}$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $egin{array}{c} 0\cdot 727 \ 1\cdot 00 \end{array}$   | 7.10                                                    | $7 \cdot 32$                                            | $+3\cdot 1$                | $7 \cdot 63$                                            | +7.5                       | $7 \cdot 72$                                            | $+8\cdot 1$                |
| T (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 7.08                                                    | ••                                                      | • •                        | ••                                                      |                            |                                                         |                            |
| √ <sub>2</sub> —CO <sub>2</sub><br>150°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.00 \\ 0.335 \end{array}$          | 8·31<br>7·64                                            |                                                         | • •                        |                                                         | • •                        |                                                         |                            |
| 100 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.333\\0.4712$                                       | 7.38                                                    | $\begin{array}{c} 7 \cdot 27 \\ 6 \cdot 98 \end{array}$ | -4·8<br>-5·4               | 7.47                                                    | $-2 \cdot 2$               | 7.56                                                    | —l·l                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6594                                                | $7 \cdot 02$                                            | 6.66                                                    | —5·4<br>—5·1               | $\begin{array}{c} 7 \cdot 18 \\ 6 \cdot 82 \end{array}$ | $-2.7 \\ -2.8$             | 7.27                                                    | -1.5                       |
| The same of the sa | 1.00                                                  | . 6.27                                                  |                                                         | •                          | •• 23                                                   |                            | 6.89 -                                                  | -1.9                       |
| ,-CO,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                  | `` <u>9</u> ⋅83                                         |                                                         |                            | •••                                                     | ••                         | ••                                                      | * * *                      |
| 250°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.335                                                 | 9.36                                                    | 8.97                                                    | -4.2                       | $9 \cdot 22$                                            | -1.5                       | 9.38                                                    | +0.2                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0 \cdot 4712$                                        | $9 \cdot 21$                                            | $8 \cdot 75$                                            | -5.0                       | 9.01                                                    | $-2 \cdot 2$               | $9 \cdot 17$                                            | -0.4                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6594                                                | 8.91                                                    | 8.55                                                    | <b>-4</b> ·0               | 8.75                                                    | -1.8                       | 8.87                                                    | -0.4                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                  | 8.36                                                    | • •                                                     | • •                        |                                                         | ••                         |                                                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                  | 11.22                                                   | *0.0                                                    |                            | •••                                                     | • •                        |                                                         |                            |
| 350°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.335 \\ 0.4712$                                     | 11.30                                                   | 10.64                                                   | <b>5</b> ⋅8                | 10.94                                                   | $-3 \cdot 2$               | $11 \cdot 17$                                           | $-1\cdot 2$                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.4712 \\ 0.6594$                                    | $11 \cdot 27$ $11 \cdot 04$                             | $10.55 \\ 10.50$                                        | -6.4 $-4.9$                | 10.85                                                   | -3.7                       | 11.08                                                   | 1.7                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                  | 10.58                                                   | 10.00                                                   | -4·9                       | 10.74                                                   | $-2\cdot7$                 | $10 \cdot 92$                                           | I·1                        |
| ,—CO,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                  | $12 \cdot 32$                                           |                                                         |                            | ••                                                      | ••                         | ••                                                      | -••                        |
| 72°C) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.44                                                  | $\begin{array}{c} 12 & 52 \\ 12 \cdot 56 \end{array}$   | 11.87                                                   | -5.5                       | $12 \cdot 21$                                           | +2.8                       | 19.50                                                   | 0.5                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                  | $12 \cdot 15$                                           | y•                                                      | -0.0                       | 14 41                                                   | T40                        | $12 \cdot 50$                                           | 0.5                        |

TABLE 4—contd.

| ,                                             |                                                           | and the second |                                      |                                                                                                           |                                      |                                                                                           | The state of the s |                                                                                       |  |  |
|-----------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
|                                               | (1)                                                       | (2)                                                                                                              | (3)                                  | (4)                                                                                                       | (5)                                  | (6)                                                                                       | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8)                                                                                   |  |  |
| N <sub>2</sub> —CO <sub>2</sub> (573°C)       | 0.00<br>0.33<br>0.50<br>0.67<br>1.00                      | -13 · 39<br>14 · 19<br>14 · 17<br>-14 · 03<br>13 · 87                                                            | 13·19<br>13·27<br>13·42              | $     \begin{array}{r}       -7 \cdot 0 \\       -6 \cdot 4 \\       -4 \cdot 3     \end{array} $         | 13:56<br>13:64<br>13:72              | -4·4<br>-3·7<br>-2·2                                                                      | 13·92<br>13·99<br>14·14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1·9<br>-1·3<br>+0·8                                                                  |  |  |
| N <sub>2</sub> —CO <sub>2</sub> (677°C)       | 0·00<br>0·50<br>1·00                                      | $15 \cdot 12$ $16 \cdot 27$ $61 \cdot 10$                                                                        | 15·23                                | <b>-6.4</b>                                                                                               | 15.66                                | <b>−3</b> ·7                                                                              | 16.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1:2                                                                                  |  |  |
| $N_2$ — $CO_2$ (774°C)                        | 0.00<br>0.50<br>1.00                                      | 16.99<br>18.28<br>18.29                                                                                          | 17.22                                | -5.8                                                                                                      | 17·7i                                | <b>–3</b> ∶i                                                                              | 18.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0:5                                                                                  |  |  |
| N <sub>2</sub> —CO <sub>2</sub><br>(300°K)    | 0·00<br>0·25<br>0·50<br>0·75<br>1·00                      | 6·13<br>5·25<br>4·90<br>4·30<br>3·93                                                                             | 5-31<br>4-72<br>4-27                 | $\begin{array}{c} +1 \cdot 1 \\ -1 \cdot 6 \\ -0 \cdot 7 \end{array}$                                     | 5·44<br>4·85<br>4·36                 | +3·6<br>-1·0<br>+1·4                                                                      | 5·27<br>4·54<br>3·92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +0·4<br>-7·3<br>-8·8                                                                  |  |  |
| N <sub>2</sub> —CO <sub>2</sub><br>(500°K)    | 0·00<br>0·25<br>0·50<br>0·75<br>1·00                      | 9·16<br>8·90<br>8·75<br>8·20<br>7·80                                                                             | 8·52<br>8·13<br>7·91                 | -4·3<br>-7·1<br>-3·5                                                                                      | 8·72<br>8·36<br>8·06                 | -2·0<br>-4·5<br>-1·7                                                                      | 8·86<br>8·51<br>8·14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0·4<br>-2·7<br>-0·7                                                                  |  |  |
| N <sub>2</sub> —CO <sub>2</sub><br>(1000°K)   | 0·00<br>0·25<br>0·50<br>0·75<br>1·00                      | 15·7<br>16·4<br>17·1<br>16·3<br>16·8                                                                             | 15·6<br>15·9<br>16·3                 | -4·9<br>-7·0<br>-0·0                                                                                      | 16·0<br>16·3<br>16·6                 | $-2.5 \\ -4.7 \\ +1.8 \\ \cdots$                                                          | 16·4<br>16·7<br>16·8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $+0.0 \\ -2.3 \\ +3.1$                                                                |  |  |
| N <sub>2</sub> —N <sub>2</sub> O<br>(50·55°C) | 0·00<br>0·253<br>0·601<br>0·746<br>0·825<br>1·00          | 6·58<br>5·44<br>4·97<br>4·96<br>4·94<br>4·72                                                                     | 5·84<br>5·17<br>4·98<br>4·89         | $   \begin{array}{r}     +7 \cdot 4 \\     +4 \cdot 0 \\     +0 \cdot 4 \\     -1 \cdot 0   \end{array} $ | 5.55<br>4.89<br>4.77<br>4.74         | $\begin{array}{c} \\ +2 \cdot 0 \\ -1 \cdot 8 \\ -3 \cdot 8 \\ -4 \cdot 0 \\ \end{array}$ | 5·82<br>5·11<br>4·92<br>4·84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $+7.0 \\ +2.8 \\ -0.8 \\ -2.0$                                                        |  |  |
| N <sub>2</sub> —N <sub>2</sub> O<br>(101°C)   | 0·00<br>0·201<br>0·441<br>0·501<br>0·699<br>0·776         | 7·35<br>6·72<br>6·46<br>6·29<br>6·29<br>·616<br>5·78                                                             | 6.79<br>6.33<br>6.25<br>6.01<br>5.94 | +1·0<br>-2·0<br>-0·6<br>-4·5<br>-3·6                                                                      | 6:50<br>5:95<br>5:87<br>5:73<br>5:72 | -3:3<br>-7:9<br>-6:7<br>-8:9<br>-7:1                                                      | 6·75<br>6·24<br>6·14<br>5·91<br>5·85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +0.4 $-3.5$ $-2.4$ $-6.0$ $-5.0$                                                      |  |  |
| N <sub>2</sub> —N <sub>2</sub> O<br>(140·2°C) | 0.00<br>0.197<br>0.385<br>0.561<br>0.70<br>1.00           | 7·80<br>7·30<br>6·47<br>6·58<br>6·40<br>6·32                                                                     | 7·27<br>6·90<br>6·66<br>6·52         | $ \begin{array}{c} -0.4 \\ +6.6 \\ +1.2 \\ +1.9 \end{array} $                                             | 6.95<br>6.49<br>6.28<br>6.22         | -4.8<br>+3.1<br>-4.6<br>-2.8                                                              | 7·21<br>6·80<br>6·53<br>6·39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} -1 \cdot 2 \\ +5 \cdot 1 \\ -0 \cdot 8 \\ -0 \cdot 2 \end{array} $ |  |  |
| N <sub>2</sub> —N <sub>2</sub> O<br>(180·1°C) | 0·00<br>0·248<br>0·398<br>0·525<br>0·642<br>0·765<br>1·00 | 8:57<br>8:23<br>7:50<br>7:58<br>7:29<br>7:18<br>7:08                                                             | 7.31                                 | $ \begin{array}{c} -4 \cdot 0 \\ +0 \cdot 1 \\ -1 \cdot 8 \\ +0 \cdot 3 \\ +0 \cdot 4 \end{array} $       | 7·51<br>7·17<br>7·01<br>6·94<br>6·94 | -8·7<br>-4·4<br>-7·5<br>-4·1<br>-3·3                                                      | 7.82<br>7.49<br>7.29<br>7.16<br>7.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5·0<br>-0:1<br>-3·8<br>-1·8<br>-1·4                                                  |  |  |

TABLE 4-contd.

| and the second of the second o |              |                         |                           |                         |                   |                                 |                                         |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|---------------------------|-------------------------|-------------------|---------------------------------|-----------------------------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)          | (2)                     | (3)                       | (4)                     | (5)               | (6)                             | (7)                                     | (8)                                                |
| NO—N <sub>•</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00         | 7 · 62                  |                           |                         | <del></del>       |                                 |                                         |                                                    |
| (101°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.174        | $7 \cdot 25$            | 7.05                      | -2.8                    | $7 \cdot 28$      | $+0.\dot{4}$                    | $\bf 7 \cdot 34$                        | +1.2                                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.298        | 6.98                    | $6 \cdot 74$              | 3.4                     | $7.\overline{05}$ | +1.0                            | 7.13                                    | $\stackrel{-}{+}\overset{-}{2}\cdot\overset{-}{1}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.548        | $6 \cdot 79$            | $6 \cdot 26$              | -7.9                    | 6.57              | $-3\cdot 2$                     | 6.66                                    | $-1 \cdot 9$                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.736        | $6 \cdot 26$            | $6 \cdot 02$              | -3.8                    | 6.23              | -0.5                            | 6.30                                    | +0.6                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00         | 5.78                    | ••                        |                         | •                 |                                 | • • • • • • • • • • • • • • • • • • • • |                                                    |
| NO-N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 0.00       | 8.11                    | ••                        |                         |                   |                                 |                                         |                                                    |
| (140·2°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.234        | $7 \cdot \overline{21}$ | $7 \cdot 38$              | +2.4                    | 7.68              | +6.5                            | $7 \cdot 75$                            | +7.5                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.498        | 6.89                    | 6.85                      | $-0.\overline{6}$       | $7 \cdot 19$      | +4.4                            | 7.29                                    | $^{-5\cdot8}_{+5\cdot8}$                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.760        | 6.58                    | $6 \cdot 51$              | - <u>1</u> ·1           | $6 \cdot 73$      | $+\mathbf{\hat{2}\cdot\hat{3}}$ | $6 \cdot 79$                            | $+3\cdot 2$                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.767        | $6 \cdot 34$            | 6.50                      | $+2\cdot 5$             | $6 \cdot 72$      | +6.0                            | 6.77                                    | +6.8                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1 \cdot 00$ | $6 \cdot 32$            | •                         |                         | • • •             |                                 | • • • •                                 | T0.0                                               |
| NO-N <sub>o</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00         | 9.01                    | **                        |                         |                   |                                 |                                         | V -                                                |
| (180 · 1°Č)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.172        | 8.43                    | $8 \cdot \overset{.}{40}$ | -0.4                    | 8 67              | +2.8                            | 8.74                                    | +3.7                                               |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.230        | 8.19                    | 8.23                      | +0.5                    | 8.56              | +4.5                            | 8.64                                    | +5.5                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.239        | 8.11                    | 8.21                      | $+1\cdot 2$             | 8.54              | +5.3                            | 8.58                                    | +5.8                                               |
| and Charles to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.717        | 7.46                    | $7 \cdot 34$              | $-1 \cdot \overline{6}$ | 7.60              | $^{+0.0}_{+1.9}$                | 7.68                                    | +3.1                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1 \cdot 00$ | 7.08                    |                           |                         |                   | 1 - 0                           |                                         | 40.I                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                         | •••                       |                         |                   |                                 | ••                                      | ••                                                 |

50°C for  $N_2$ — $CO_2$  and 319°C for  $N_2$ — $O_2$  in all the three methods. This precedure also seeks justification in the fact that  $\varphi_{ij}$  may be regarded as temperature and composition independent.

## DISCUSSION

An idea of the relative success of the approximate, semi-theoretical and empirical procedures for computing  $\lambda_{mix}$  can be formed by looking at the percentage deviations in Table 2. It is found that all the methods can reproduce the experimental values on the average within a few per cent, though the deviations in certain cases exceed the uncertainties of the experimental data. To have a more precise idea we calculate the average absolute

| Gas Pair                                         |             | Temp. | $\substack{\text{Mole-fraction}\\ \mathbf{X_1}}$ | <sup>\( \)</sup> exptl. | <sup>\(\lambda\)</sup> caled. | % Dev.       |
|--------------------------------------------------|-------------|-------|--------------------------------------------------|-------------------------|-------------------------------|--------------|
| <del></del>                                      | <del></del> |       |                                                  |                         |                               | <del> </del> |
| He—CH <sub>4</sub>                               |             | 316   | $0 \cdot 254$                                    | 40 · 63                 | <b>38·7</b> 0                 | <b>4</b> ·8  |
|                                                  |             |       | 0.450                                            | 30.54                   | 31.06                         | +1.7         |
|                                                  |             |       | $0 \cdot 701$                                    | $24 \cdot 53$           | $24 \cdot 87$                 | +1.4         |
| He—CO <sub>2</sub>                               | 2.2         | 0     | 0.26                                             | 17 83                   | $17 \cdot 44$                 | -2.2         |
| T",                                              |             | 6     | 0.48                                             | $11 \cdot 20$           | 10.78                         | <b>3</b> ·8  |
|                                                  |             |       | 0.75                                             | $6 \cdot 35$            | $6 \cdot 10$                  | <b>3</b> ·9  |
| He—CO <sub>2</sub>                               |             | 316   | 0.39                                             | $23 \cdot 65$           | $24 \cdot 50$                 | +3.6         |
| O <sub>2</sub> —CO <sub>2</sub>                  |             | 97    | 0.222                                            | 7.027                   | 7.319                         | +4.2         |
|                                                  |             |       | 0.464                                            | 6.383                   | 6.465                         | +1.3         |
|                                                  |             |       | 0.685                                            | 5.883                   | 5.867                         | -0.3         |
| and extract the second experience and the second |             |       | 0.730                                            | $5 \cdot 777$           | 5.761                         | -0.3         |

Table 6 Comparison of experimental and calculated  $\lambda_{mix}$  values for the ternary mixture  $N_2$ — $O_2$ — $CO_2$  at 97°C. The concentrations are  $X_{N_2}$ =0·3231,  $X_{O_2}$ =0·3729 and  $X_{CO_2}$ =0·3040

| λ exptl. | λ calcd.<br>approx. | % dev. | λ calcd.<br>semi-theoret. | %dev. | λcalcd.<br>empirical | %<br>dev. |  |
|----------|---------------------|--------|---------------------------|-------|----------------------|-----------|--|
| 6.729    | 6.372               | 5·3    | 6 · 665                   | -1.0  | 6.714                | -0.2      |  |

deviation for each system and these are indicated in Table 7. The experimental data for the systems  $O_2$ — $N_2O$ ,  $N_2$ — $N_2O$  and NO— $N_2O$  are not smooth, the scatter is several per cent and therefore we have not given proportionate weight to the deviations encountered in these cases. We then find that pronounced disagreement is found only for He— $CO_2$  and  $H_2$ — $C_2H_4$  for the approximate method. The semi-theoretical as well as empirical procedures always lead to satisfactory results. The average absolute deviations for all the systems of Table 2 are,  $3\cdot0\%$  for the approximate method,  $1\cdot7\%$  for the semi-theoretical method, and  $1\cdot6\%$  for the empirical method. Thus we find that, although all the methods are reasonably successful, the semi-theoretical and empirical procedures are somewhat preferable. This result is based on the computations of Table 2 only.

Table 7

Average absolute percentage deviation systemwise for computed and experimental values of table 2

| Gas Pair and                                                         | Approximate | Semi-theoretical | Empirical |
|----------------------------------------------------------------------|-------------|------------------|-----------|
| Temperature                                                          |             |                  |           |
| He-CH <sub>4</sub>                                                   | 2.8         | 3.8              | 0.6       |
| (316°C)<br>HeCO <sub>2</sub>                                         | 7.3         | 0.4              | 0•4       |
| (0°C)<br>H <sub>2</sub> —CO <sub>2</sub>                             | 1.7         | 0.8              | 0.7       |
| (0°C)<br>H <sub>2</sub> —C <b>O</b>                                  | 1.1         | 2•4              | 1.7       |
| (0°C)<br>H.—N.O                                                      | 1.1         | 1.0              | 1.2       |
| (0°C)<br>H <sub>2</sub> —C <sub>2</sub> H <sub>4</sub>               | <b>5·2</b>  | 2.0              | 2.1       |
| (25°C)<br>O <sub>2</sub> —N <sub>2</sub>                             | 2.3         | 0.4              | 1.6       |
| (319°C)<br>O,—CO,                                                    | 3.6         | 0.2              | 0.1       |
| (97°C)<br>O <sub>2</sub> —N <sub>2</sub> O                           | 1.7         | 2.9              | 1.5       |
| (31·85°C)<br>N <sub>2</sub> —CO <sub>2</sub> 1                       | 2.6         | 0.5              | 0.7       |
| (50°C)<br>N <sub>2</sub> —N <sub>2</sub> O                           | 2·4         | 2.9              | 2.5       |
| (31·85°C)<br>NO—N <sub>2</sub> O                                     | 5.4         | 5.3              | 8.7       |
| (50·55°Č)<br>C <sub>3</sub> H <sub>8</sub> —CH <sub>4</sub>          | 0.7         | 0.8              | 0.0       |
| (95°°C)<br>C <sub>3</sub> H <sub>4</sub> —CO <sub>2</sub><br>(95°°C) | 3.8         | 0.7              | 0.5       |

Records of Table 4, in general, support the validity of  $\lambda_{mix}$  calculations based on the assumption of temperature independent  $\phi_{ij}$ . The deviations no doubt assume in many cases somewhat enhanced magnitudes. To facilitate, such a study of the average absolute percentage deviations systemwise a report has been given in Table 8. The deviations in Table 4, in many cases, can be justified on the basis of the experimental data being uncertain also. More illuminating are the figures of the percentage average absolute deviations for all the systems of Table 4. It is found that these numbers are  $3 \cdot 3$ ,  $3 \cdot 8$  and  $2 \cdot 9$  for the approximate

Table 8

Average absolute percentage deviation systemwise for computed and experimental values of table 4

| Approximate                       | Semi-theoretical                                                                                        | Empirical                                            |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                   |                                                                                                         |                                                      |
| 0.0                               | 7.9                                                                                                     | 6.8                                                  |
| and the second                    |                                                                                                         | M                                                    |
|                                   | 2.9                                                                                                     | 3.3]                                                 |
| 6.8                               | 3.7                                                                                                     | 4.9                                                  |
| 1.6                               | 4.9                                                                                                     | 3.0                                                  |
| **                                | <b>4.3</b>                                                                                              | 3.0                                                  |
| 1.0                               | 4.91                                                                                                    | 3.8                                                  |
| 2.4                               |                                                                                                         | 5.57                                                 |
|                                   |                                                                                                         | , př                                                 |
| 5.1                               | 2.6                                                                                                     | 1.5                                                  |
| 4.4                               | 1.8                                                                                                     | 0.3                                                  |
|                                   |                                                                                                         |                                                      |
| <b>5.7</b>                        | 3.2                                                                                                     | I · 3                                                |
| 5.5                               | 2.8                                                                                                     | 0.5                                                  |
|                                   |                                                                                                         |                                                      |
| 5.9                               | <b>_ 3·4</b>                                                                                            | 1.3                                                  |
| 5.8                               | 3.1                                                                                                     | 0.5                                                  |
|                                   |                                                                                                         | 6.75                                                 |
| <u>. 1·1</u>                      | $2 \cdot 0$                                                                                             | 5.0                                                  |
| 5.0                               | 2.7                                                                                                     | 1.3                                                  |
| 7-5                               |                                                                                                         | The same same same same same same same sam           |
| 4.0                               | 3.0                                                                                                     | 1.8                                                  |
| 3 · 2                             | 2.9                                                                                                     | 3.2                                                  |
|                                   | ^. <b>C</b>                                                                                             |                                                      |
| <b>2.3</b>                        | 6.8                                                                                                     | 3.5                                                  |
| $oldsymbol{2} \cdot oldsymbol{5}$ | 3.8                                                                                                     | 1.8                                                  |
| 1.6                               |                                                                                                         |                                                      |
| 1.3                               | 5.6                                                                                                     | 2.4                                                  |
| 4.5                               | $ar{1} \cdot 3$                                                                                         | 1.5                                                  |
|                                   |                                                                                                         |                                                      |
| 7 17V                             | <b>4·8</b>                                                                                              | 5.8                                                  |
| 0.9                               | <b>3⋅6</b>                                                                                              | 4.5                                                  |
|                                   | 0·0  2·6  6·8  1·6  1·0  2·4  5·1  4·4  5·7  5·5  5·9  5·8  1·1  5·0  4·0  3·2  2·3  2·5  1·3  4·5  1·7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

semi-theoretical and empirical procedures of computations. Thus for calculations of  $\lambda_{mix}$  at high temperatures all the methods are found almost equally good. However, the success of the approximate method at high temperatures is expected because of the better validity of some of the assumptions involved. The empirical and semi-theoretical procedures, on account of the way adopted for fixing  $\phi_{ij}$ , get relatively more dependable. Further confirmation of these conclusions is obtained from the work of Mathur & Saxena.

The rigorous calculated values for the three systems listed in Table 5 are also in agreement with the experimental values usually in the same order of magnitude as the above methods. The average absolute deviations for all the eleven mixtures of Table 5 is 2.5%. This puts more importance to the above computations which besides being easy require much less initial input information.

The ternary system calculations given in Table 6 are of very interesting curiosity besides being very useful. It is found that the approximate method is rather poor in reproducing  $\lambda_{mix}$  though semi-theoretical and empirical procedures are excellent.

It is interesting to examine the validity of a relation of the type of (1) for predicting and correlating  $\lambda_{mix}$  data for polyatomic molecules. For such systems the relation of (5) must be the starting working formula. This has also been investigated by Saksena & Saxena. Their work reveals that for polyatomic molecules, (5) reduces to (1) only with a new definition for  $\lambda_i$ . We now get in its place  $\lambda_{eff}$  defined as follows:

$$\lambda_{eff} = \lambda'_{i} \left[ 1 + \frac{1}{[Z_{i}]_{mix}} \right] - \lambda^{\circ}_{i} \left[ \frac{1}{[Z_{i}]_{mix}} \left\{ 1 + \frac{[C'_{i}]_{mix}}{C_{vtr}} \right\} \right]$$
 (6)

Here the various terms are as defined by Saksena & Saxena. In all complicated polyatomic molecules  $\lambda_{eff}$  is appreciably different from  $\lambda_i$  and the Wassiljewa form (1) is inadequate to interpret  $\lambda_{min}$  data. This explains, to a large extent, the poor agreement found for many complicated systems in Tables 3 and 4. For such cases, because of the flexibility and appropriateness of form, (1) may still continue to be precise enough for correlation specially for semi-theoretical and empirical procedures.

#### ACKNOWLEDGEMENT

We are thankful to the Ministry of Defence for supporting this research project and for the award of a research scholarship to one of us.

## REFERENCES

- 1. Hirschfelder, J. O., J. Chem. Phys., 26 (1957), 282.
- HIRSOHFELDER, J.O., "Sixth International Combustion Symposium", (Reinhold Publishing Corporation, New York) 1957, p. 351.
- 3. MASON, E. A. & SAXENA, S. C., Phys. Fluids, 1 (1958), 361.
- 4. Mason, E.A. & Monchick, L., J. Chem. Phys., 36 (1962), 1622.
- 5. SAKENA, S. C., SAKSENA M. P. & GAMBHIR, R. S., Brit. J. Appl. Phys., 15 (1964), 843.
- 6. Monchick, L., Yun, K. S. & Mason, E.A., J. Chem. Phys., 39 (1963), 654.
- 7. SAKENA, S. C., SAKSENA, M. P., GAMBHIR, R. S. & GANDHI, J. M., Physica, 31 (1965), 333.
- 8. SRIVASTAVA, B. N. & SAXENA, S. C., Proc. Phys. Soc. (London), B. 70 (1957), 369.
- 9. CHEUNG, H., BROMLEY, L. A. & WILKE, .C. R., Report No. U.C.R.L.-8230 Rev. (1959).
- 10. WEBER, S. T. H., Ann. Physik., 54 (1917), 481.
- 11. Kornfeld, G. & Hilferding, G.K., Z. fur Physik. Chem., Bodenstein-Festband, (1931), 792.
- 12. DAVIDSON, J. M. & MUSIC, J. F., U. S. Atomic Energy Comm., H. W. 29021, 7 (1953).

- 13. IBBS, T. L. & HIRST, A. A., Proc. Roy. Soc. (London) A 123, (1929), 134.
- 14. KEYES, F. G., Trans. Amer. Soc. Mech. Engrs., 74 (1952), 1303.
- 15. ROTHMAN, A. J., PH. D. THESIS, University of California, 1954.
- 6. WESTENBERG, A. A. & de HASS, N., Phys. Fluids, 5 (1962), 266.
- 17. PEREIBA, A. N. G. & RAW, C. J. G., Phys. Fluids 6, (1963), 1091.
- Hirschfelder, Curtiss & Bird, "Molecular Theory of Gases and Liquids," (John Wiley and Sons, Inc., New York) 1964.
- 19. MUCKENFUSS, C. & CURTISS, C. F., J. Chem. Phys., 23 (1958), 1273.
- 20. MASON, E. A. & SAXENA, S. C., J. Chem. Phys., 31 (1959), 511.