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The froquency equation for the torsional vibrations of composite cylinders, either concentric

or bonded end to end, have been obtained. In the former case, the variation of the resonant

frequency with inner eylinder thickness has been studied for the lowest symmotric and antisy-

mmetiic modes. In the latter case, the variation of the resonant frequency with change in the

ratio of the lengths of the cylinders has been studied for the fundamental mode and its first

harmonic in the frequency range where propagation constant for.one part of cylinder is real

whereas the propagation constant for the other part is imaginary. Vibration patterns for some

particular cases for the latter type have been drawn.

Baltrukonis et l! discussed the axial-shear vibrations of an infinitely long com-

posite circular cylinder with two concentric circular cylindrical layers which are perfectly
bonded at their interface. The problem of composite cylinders was initiated because of its

application in the design of solid propellant rockets.

In this paperis discussed the torsional viorations of two different types of finite,
isotropie, composite circular cylinders viz. () a hollow composite cylinder with two
concentric cylindrical layers and (%) a solid composite cylinder with two layers such that
ivtorface of the layers is a normal cross-section of the cylinder.

HOLLOW COMPGOGSITE CYLINDE"B

Tt has been assumed that the outer casing is very thin and that its stiffness is very
large compared to that of the core material. This assumption is valid keeping in view our
interest in the problem of solid propellant rocket. Frequency equation for this problem has
been obtained by satisfying requisite boundary conditions at lateral surfaces and interface
of the cylinder whercas the boundary condition at the flat ends determines the order of
mode. This frequency equation has been solved for different geometries for motions which
are symmetrical as well as antisymmetrical about the central plare of the cylinder and. the
frequency curves have been drawn for both the cases. :

Statement of the problem v
Consider the torsional vibrations of a finite, isotropic, composite bar (length 2c)
consisting of two concentric, thick-walled cylinders (Radii of oater casing and inner core
being 7, and 2, respectively and interface being at the radius r = a) of differert materials
and assume that the displacements aie such that : :
wp(r,0,2,t) =u,(r,0,2t)=0 )
uy= Ug(razt) .
wherer, 8, z are polar cylindrical coordinates and w,, g, w, are displacement components
in these directions. The only non-zero stresses are the tangential stresses 7,9 and 7g,. In
this case, the equation of motion is - : A
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B TFor simple harmonic solution, we put
s=un{ o (v) }exp (ia) ®

whetre y is tf e propagation constant in the axial direction and w is the circillar frequency.

We shall take cos ( y 2z ) or sin ( y 2z ) according as the motion is symmetric or anti-
symmetric about_the central plane.

g+ From (2) and (3) we get

2% u(r) 1 au(r) u(r)
o T v ar T + (K2 — ) u(r) =0 4)
] 2 . ' : .
where K2 = o; P
The solution of (4) can be written as
ur)=A4J, (ar) + BY;(x1) ®)
where a? == K? — o2 (6)

Ccos

. ugjz'[ 4; I, (“j' r) —|— B; Y1 (% 1) { sin (vj z)}] exp ({ wt) (7),

where j = 1 denotes quantity for outer layer and j = 2 denotes quantity for inner layer of
the cylinder.

Boundary conditions ot the lateral surfaces and frequency equation.

We now put boundary conditions such that (a) the inner and outer cylindrical
surfaces are traction free, and (b) tangential stresses and displacements are contmuous
at the interface.

Mathematically, the above two conditionis can be translated as

(Tr9,)p =9, = 0 for all z
’&‘. e. Al J2 (OC]_ 1"1) “l" Bl Ya (“J 7'1) =0 ‘ (8)
and V=72 9)
(T/rea )r = 7y =0 fOl' all 2
t.e. Agdy(apr) + By Yy(ag7) =0 (10)

(Tr9, dpmg = (170, )p gy for all 2
e py {A 0 Jg (@) + Byog Yy (¢ @) ] — pa [ g0t Iy (%3 @)
‘+‘B20€z Yg (daal)-—o (11)
(’“el),.=w —(uez),«___w ~ for.all z ‘
e [ 4 Jy(wa) + B Y, (ya)] — [4ydy(e30) + By Yy (o) ] =0 (12)

Eliminating the unknown constants 4, Bl, 4,, B, from (8), (10), (11) and (12) we
obtain the frequency equation as follows :

Ja (%111) Yolar) 0 ‘ 0

0 0 Iy (g 72) | Yy (2 72) —0
g (ma)  prog Ya(0) —paoy Iy (g a) — pg g Y (%3 @)
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;e
— pa o § — Jg (0 71) Yy (0 a) + Yy (0 7y) Jl_ (2 @) } { I3 (ea7g) ¥y (g a) :
— Y3 (2g79) Jy(20) } + poy { Iy (2 1)) ¥y (g @) — Yy (g 7) ==0 (13)
Jz(%“)}{Yz(“z”z)J;(“z“)"Jz(mzfz) Y, (p0)} s

Wenow assume that the outer casing ¢f the cylinder is very thin d.e., ry/a -1 and that
the stiffness of the outer casing is very lazge compared to that of the core material 4.e;,
(py [ pa ) —> o . With these two assumptions the frequency equation (13) becomes
indeterminate for #, = a and, therefore, expanding it in Taylor’s series in the neighbourhood

of (r,Ja = 1) and assuming that p, = py l ( —ZI— —1 ) it can be modified as follows:
( Ty ' s
in Uy Q. T Jl (“2 a) _— Yl (0(2 a) J2 %y a. ‘a—

-l——:f—:g—z—{Jz (ocza. %)Yz(mza)——l’z(%a.%—)Jz(ocza) }—.:O (14)

Boundary conditions at the flat ends of the cylinder ‘
Let us assume that the flat ends of the cylinder are traction free surfaces
ie. (T92) 2=+ ¢ = 0 for all values of . Then sin (ye) =0 (15)

if the motiop is symmetric about the central plane and cos (y ¢) = 0 - (18)
if the motion is antisymmetric about the central plane.

Thus the values of yc corresponding to symmetric and antisymmetric motions
about the central plane are respectively given by

yec = nmw (17)

where » is a positive integer
and

yo=(2m+1) & (18)
where m is again an integer.

Numerical solutions

The frequency equation (14) is a transcendental equation involving 5 a, (rafa), Ye
and a/c. (17) or (18) fix the value of vc for a particular chosen value of » or m.
Let us consider the symmetric mode for n=1 and anti-symmetric mode for m=0. Ratio
ajc is defined by the dimensions of the cylinder. Thus for a particular cylinder and for a
particular mode, (14) can Lesolved for ry/a and o a. From the values of «; @ and Yo
we can find the value of frequency parameter k,a. Thus we can draw curves between
ry/a and k.. Here we have drawn curves between ro/a and (ky0)/(ka)o where (k0o
denotes the value of %y at 7,/a=0. In the present paper, have been drawn these curves
for four different values of diameter-thickness ratios a/c=0-1,0-2,0-5 and 1-0 for symmet
ric as well as antisymmetric motions in Fig. 1 and Fig. 2 respectively The values of £y for
different values of 7,/a corresponding to symmetric and antisymmetric motions are given
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Fig. 1-—Variation of frequency parameter (k,a)/(k,a), Fig. 2—Variation of frequency parameter (k,a)] (kya2),,
with the inner radius ratio (r,/a) for those vibrat- - with the inner radius ratio (r,/a) for those vibra-
ions of a cylinder which are symmetric about tions of a cylinder which are antisymmetric

the central plane, . - about the gentral plane.” :

in Tables 1 and 2 respectively. The flatness of curves in Fig. 1 and 2 in the neighbourbocd
of r5/a == 0 is again observed here to be similar to the flatness of curves drawn by Baltrukoris
in Fig. 2 (a) of his paper. Further, it is observed for symmetric motions that the values of
(ks)/(kq@)o go on decreasing as the value of a/c decreases. In the case of antisymmetric
motions the curves corresponding to a/c = 0+1 and a/c = 0-2 are almost coincident.

SOLID COMPOSITE CYLINDER

The torsional vibrations of a composite circular cylinder whose interface is its
normal cross section, have been considered here. The frequency equation i obtained by
satisfying requisite boundary conditions at the flat surfaces and the interface. Mode number
is determined by houndary conditiors at the lateral surface. The frequency equation has
been solved for the fundamental mode and its first harmonic and the frequency spectra
for these modes have been drawn graphically. Vibration patterns for particular cases have
also been shown. RN

Let us assume that the interface of the cylinder lies at 2 = 0 and the other flat surfaces

lie at z=cand z= —[. Displacement in this case. will be the same as given by (1). The
solution (7) of the equation of motion will be modified as. . .
g, = Jy (s ) [ As c08 (Ys Z) + By sin (Vs Z)] exp G wt) (19)

where s=1, 2 stands for different materials on two sides of the interface.
We have neglected Yy (ot 7) to avoid singularities at r = 0.

Boundary conditions at_the lateral surface - . . . .
Let us assume that the lateral surface is a traction free surface. This requires that .

7)., =:0 for all values of 2.
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TasLEe 1

VALUES OF FREQUENCY PARAMETER (k;¢). CORRESPONDING TO DIFFERENT VALUES OF INNER BADIUS RATIO
(r,/a) FOR THAT MOTION WHICH IS SYMMETRIC ABOUT THE OENTRAL PLANE

ryla 4 " Frequenoy parameter—rF,a

) aje=0-1 ) ajce=0-2 ajc=05 afc=1:0
0-0 0-6977 1.3687 3-0188 4-6590
0-2 0-6986 1:3713 3-0196 4-6730
0-4 0-7058 1-3856 © 3-0883 4-8240
05 0-7175 1-4106 3-1739 5:0010
0:6 0-7391 1-4578 3-3227 5-3250
0-8 0-8716 i 1-7300 4-0979 6-9510
0-9 1-1161 2-2168 5-3803 98450

TasLe 2

VALUES OF FREQUENOY PARAMETER (k,@) CORRESPONDING TO DIFFERENT VALUES OF INNER RADIUS RATIO (r,/a)
¥OR THAT MOTION WHICH IS ANTISYMMETRIC ABOUT THE CENTRAL PLANE

rofa Frequency parameter—%k,a
afe=0-1 afc=0-2 ‘ ajc=0-5 ajc=1-Q
00 0-3511 0-6977 1-6861 3-0188
0-2 0-3520 0-6986 1-6957 3-0196
04 0-3566 - 0-7058 1-70901 3-0883
05 0-3601 . 0-7175 1-7412 3-1739
06 0-3709 ) 0-7391 1-8031 3-3227
0-8 0-4381 0-8716 2-1524 4-0979
0-9 05576 1-1161 2-4976 5-3803
.6 : .
Jo (a) [ Iy (@0) =2 (2 0) = ) ; (20)
and Jo (aga) [ Iy (aga) = 2 [ (x30) (21)

Let a; = o, = o (say) be a possible solution which satisfies (20) and (21) simultaneously
in which case they can be combined into a single equation

Jo (@a) [ Jy (@ a) =2/ (xa) (22)
This equation determines the value of « o for different modes of vibrations.

_Boundary conditions at the flat ends and frequency equation ~

Tn this case, we again assume that flat surfaces are traction free surfaces and that

surface tractions and displacement components are continuous at the interface. These
boundary conditions can be written as :

(T02,) oo = O for all values of
440 © Ay sin (Yye) — B cos (¥, ¢) = 0 (23)
‘, (70,2 )y ;=0 for all values of #
i 4, sin (Y31) + By cos (V1) =0 (24)
| (“el)z=o“—“(“ez)z=o £
' =0 2= or all values of »
%¢. : Al —_— A2 7——0 (25)

(Tozl )zf —o=( "0z, )‘Z‘ =0 for all valaes of #

Bll ™ ')’1—332 pgya =0 v ' (26)

/
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FREQUENCY PARAMETER «» pe
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Fig, 3 —Variation of the frequency parameter pc with

respect to the ratio of the lengths of copper and

sbeel materials (I/c) for az=0-0
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“Eliminating AI,BI, 4,, and B, from (23) to (26}
we get the frequency equatlon as follows :

-~ [tan (y c)/tan (721)] = g/ m (va/71)

' tan { (K — a1l l}

Fo ) M22 7720
(K]2 — Oc2)|/2

M

tan{ w2a2 -e1—~—ac2a2 1/ o }
o
tan {( 292 L2 p 2 2_l_
L Fa a
(w2a2 £ g az) :
= ﬁ(ﬁ) Fa @7
! (wzaz Pr 2 az)
y - <y

15,00

13.00

LT B

Fig. 4, —Variation &f the frequency parameter pe with respect to the aspect ratio (I/a) for @a =5-136; cfa=5
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Numerical solutions

Frequency equation (27) is an equation involving wa, «a, ¢/a and l/a. Corresponding
values of p;, py, py and pg can be used according to the metals used in the composite
cylinder. Let us take p;, u; and ¢ for steel and py, py and 1 for copper. Frequency equ-
ation has been solved for these metals for the fundamental mode (xa = 0) and its first
harmonic (wa=>5-136). For the fundamental mode (xa = 0) the above frequency equa-
tion can be written as ‘

ton {0 (Pl/y'j.)”z} W \E [ o\
AT\l \n O 29)
tan {w ! (Pz/l‘z)llz} ' ("1) ( Pl) |

If we put py = 7-849 gmjem¥ pp = 8-843  gm/om?, p; = 8:19x10"t. dynes/om?
g = 4;-_4&7><le11 dynes/em? and replace w? by p? X 1011 then (28) can be rewritten as

tan {pc (0-97897)}/tan {pl (1-40650)} = — 0-78416 S ©@9)

After solving (29) six curves between pc and lje have been drawn as shown in Fig. 3.
These curves become asymptotic to the axis of pe as the value of pc increases. The
variation of lower values of pc is quite small whereas the variation of upper values of pc is
quite large. . . - R - o . ‘

For the first dispersive mode (wg = 5-136) we'find that the propagation constant cor-
responding to steel becomes imaginary in the range of frequency parameter pa = 3-65157
and pa = 5-24639 whereas the propagation constant corresponding to copper withir, this
“range becomes real. Having substituted the values of densities, moduli of rigidity and

: aa, the frequency equation becomes an

/\ /\ equation in pa, ¢/o and l/a. We have fixed

L >~ c/a=5-0andsolved the resulting frequency

/ \/ o . € equation for pe and l/a within the range
: , pa =3-70 to 5-20.First five curvés have been

e drawn between pe and /o in Fig. 4.- These
~ ) curves are found to be asymptotic near the

CQPPER

\ /\ s axis of l/a as the value of I/o increases. The
\/ \/ variation of //a near pa = 3-70 is found to be

more than its variation near pa = 5-20,

/ \/ C \/

COPPER

Fig. 8.—Displacements of the surfaces of the cylinders with aspect ratios (l/a)=4-630 and 7-367 for frequency
parameter pa = 40 and c/a = 5-0
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Fig. 6 —Displacements of the surfaces of the cylinders with aspect ratios /e — 2613 and 4-209 for frequency
par&meter pa = 4-60 and ¢/o = 5:00

Correspondmg to pa = 4-0, c/a = 5 0 vibration pattems have been drawn for
l/a = 4-630 and 7-367 in Fig. 5. Vlbratlon patternshave also been drawn corresponding to
pa = 4-60, c/a = 5-0 for lja = 2-613 and 4:209 in Fig. 6. These vibration patterns depict .
the attenuation of amplitudes in the metal with imaginary propagation constant as we
proceed away from the interface. The amplitude ultimately vanishes at the flat end of this
metal. On the other side of the interface, 4.. on the metal for which propagation constant
is real, the amplitude varies harmonjcally. Amplitudes at the flat ends of this metal are
more than that of the amplitude at the interface. Further, we observe that the amplitude
at the flat end of this metal is inversely proportlonal to the frequency parameter:
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