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A normal distribution with \farying standard deviation has been considered .in this note.

Statistical properties of the distribution and the estimation of the parameters involved therein
are also discussed. : - . .

There are some practical situations in which the observed variables may have normal
distribution with parameters varying from observation: to observation. Bhattacharjee
et all considered the case with uniform shift in the mean and Teichroew? treated the
problem. when the standard deviation follows a gamma distribution. In practice, however,
the variations in the standard deviation may be restricted within finite limits. A case in
which the standard deviation is uniformly distributed over the range [«, B7] is
considered in this note. Statistical properties of the distribution and the estimation of
the parameters are also discussed. -

DERIVATION OF THE DISTRIBUTION AND STATISTICAL PROI;ERTIES
Without loss of generality, the conditional density of # given ¢ is assumed to be
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P - : (e>0)
where o has a probability density : :
 fle)=1p—wifa<o<B ‘
’ © . 7 = 0 otherwise, where a>0 S (2)

Multiﬁlif‘in'é"tliééé. prldbkability densities and integrating over the range involved, we
obtain for the marginal density : '

1 —u?(232 g2 —?/202 22
f (@) = _——_(.3—“) 2'\/2—‘”—{6 L[)[l; 1; -2?‘3 J—-e Y’[l; 1; 5o ] }
’ : (—oo <z < o0)

\ B>a>0) (3
using the result : '

%0 1 — N
\ f e—t t dt=e ¢[I; L;z],
x .
where ¢ [a; b; 2] is the well-known function due to Tricomi® defined for R, a>0.
Let us designate by f (z; ‘o, 3) the distribution obtained from (3) by the substitution
B=o04+3 a=0—3 with o> 8> 0. This means that the standard deviation
is uniformly distributed with mean value at o and maximum deviation 8 on either
side of the mean. It may be seen through an easy limit procedure that as 8 approaches zero,
J (z; o, 8) tends to the probability density (1). '
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For the moments of f (z; o, 8), it is ev1dent that wo4+1=0(4=0,1,2,......)
so that in particular the mean is zero and so all are odd moments. For even order
moments, we have -
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by using the followmg result for the Laplace transformé of ¥ [a; b; 2]
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for R, b>o0, R, ¢< R, b+1 and | 1—S8 | <] 3
where ,F; [8, b; o; #] is the well-known Gauss function defined by
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the series being absolutely convergent whenever | @ | <1and When r=1, provuied that
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In particular : , ) ‘ . (N aee. L’ '.i"j .
by = ™ er )
Mi = 30 + 6023 4 2 st . 'I\\i ate.. 2 _ /
38 N 7
=‘15(6+5482+30284+f.) \SV .
tg g o 7 ng Bbaw.nn.‘ﬁ““ /

pg = 3b (308 4 280552 4 420%%% + 120%° 4 2';7'--

5.

which. we shall use later.

ESTIMATION OF THE PARAMETERS

Let (ry, gy oot .,@, ) be arandom sample from the distribution specified by the
probability density f( f(@;0,8 ). The moment estimators for o> and 9%, provided
they ex1st are given by

2 = v, | - - (6)
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Bvidently, the large sample variance of o® is prl B sl o

. A A :
and that for 8 (=A) is obtained by using Cramer’s formula®

b= (Y e v (5] (62) m e + @) ()

where the partial derivatives are to be evaluated at the points v, = p,’ and v =
and the second order moments for the. sample moments are obtamed by using (5) and the
formula given in Kendall® a8 given below: '
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The partial derivatives are found to be _
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Using then (7), (8) and (9), we obtain, for the large sample variance of- 82 the fo]lowmg
expression.

A 2%, , 2976 3972 3776
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