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BULK QUEUES WITH ARBITRARY ARRIVALS AND EXPONENTIAL
SERVICE TIME DISTRIBUTIONS '

8. SusBa Rao
Defence Research & Development Laboratory, Hyderabad

The bulk queuing problem has been studied under the assumption that theinput is restricted
to & wide class of arrival time distributions and -exponential service. Both time dependent
and steady state cases have been examined. The results have been specialised for single
arrivals and Erlangian inputs.’

The steady state solution of the bulk service queuing problem was first obtained by
Bailey! by using the ‘Imbedded Markov chain’ technique and later by Jaiswal? by the
phase technique. Downtown? gave the solution for the waiting time distribution. Jaiswalt
obtained the time dependent solution utilising the phase technique and also the busy
period distribution® for the time dependent case. In all these cases a Poisson input- and
* a general service time distribution were assumed, the units arriving singly but being. ser-
viced in groups of S or less. Miller® studied a generalised model of queues where units
arrive and are served in batches. Recently Keilson” has studied the bulk queuing process
with random’ arrival epochs and arbitrary service times, considering the general bulk
queue as a Hilbert problem. :

Two types of bulk service queuing processes have been considered : (i) the ‘transporta-
tion’ type of bulk queues considered by Bailey and Downtown where the server on finding
an empty glieue does not wait and the next arriving unit has to wait for the next service
epoch; (i) the ordinary bulk service queuing process, considered by Jaiswal and Miller
where, as in the classical queuing process, the server on finding an empty queue waits
for a unit to arrive to start the next service.

The two processes are quite different, but in the steady state, Jaiswal* has shown that
the probability that there are n units just before a service is to commence, is the same
for both processes with Poisson inputs and arbitrary service time distributions.

In this paper a bulk queming process of the transportation type, with an arbitrary
. arrival time distribution, has been considered with the help of the phase method. The
study also incorporates the idea of batch arrivals and batch services discussed by
Miller®. The results have been specialised for single arrivals and Erlangian inputs.

Units arrive at a service station in batches, the size of the batch being a random vari-
able, .e. the size of an arrival batch is N with probability by (& by = 1). The inter-
arrival time between successive batches are independent random variables and the arrival
pattern of the batches is described as follows:

We assume the existence of an arrival-timing channel having an arbitrary number
of phases, the time of staying in any of these phases being identically, independently and
exponentially distributed with mean 1/A. A reservoir of infinite capacity attached to this

channel emits a group~of units when it finds no one in the channel. The emitted group

gees to the rth phase with probability Oy . After staying in that phase for a certain time,
the group moves to the (r—1)th phase, and then to the (+—2)th and so on, and finally
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from the first phase into the queue. When the arrival-time channel thus becomes empty,
another group of units is emitted into the channel from the reservoir and the process is
repeated. As usual the phases are labelled in the reverse order. This method of simulating
an arrival time or service time distribution is well established and the method of choosing
“the O, and A, as given by Luchak8, makes this method an elegant, but approximate,
technique to' generate a wide class of arrival distributions met in practice.

It is seen from the above that inter-arrival times are identically and indepehdently '
distributed according to ‘ : :
' ' o (yr—1 —x
4 @)ydt =2 C, =i © Mt
r=1

The service mechanism is described thus—

A service station offers service at certain epochs of time in such a way. that at each.
service epoch the server decides to take a batch of size M with probability dy (£ dy =1)
and accepts for service M units or the whole length of the queue whichever is less. The
inter-service times are random variables having a negative exponential distribution with
mean 1/u. Miller® further distinguishes between Model I and Model II depending on
whether late arrivals join the batch in service or not, in case the ‘quota’ for the service.
batch has not been met. However, this distinction does not arise in a transportation
type bulk queuing-process as any new arrival shall have to wait for the next service epoch.

_ Further we assume that there exist two numbers mo and n, such that by = o for
"N > n, and dy = o for M > ms,, ‘ :
TIME—DEPENDENT SOLUTION

Let P, (¢) denote the probability that at time ¢ there are # units in the queue waiting
for service and the arrival group is in the r-th phase of the arrival timing channel. Then
the following set of different—differential equations describes the process.

Plar () = — O+ ) P t) + X Pari () +A 0,y £ by Powa(®) + 1 2t Pryair )

(n >0, 7 <) -
Pai Q) = — @+ ) Paj(© + 20 & by Pusya (0 + 1 2 T Paratj9) 6>0) @)
' ’ o - M, M ’
Plor(t) =—APor () + A Poyya () + MMZ ldM > an,r ® (r<j) )
. \ m, M B \ N .

Poj () =— N Poj () + 1 £ du Z Puj(i) \ @

Let _;IS define the Laplace transform of P,, (f) as
. o . _ a t - ’. ‘ . N ‘
P, (a) = } e P, () dt (B, a>0) (5)

. o .
Let us also assume that the system starts with no units at time ¢ = 0.

te, Pur(0) =0 for n>o0
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Py =0 NG 11,5 )
Takmg the Laplace transform of the above set of equatlons (1) “to (4) we. obtam

",_('\ 4 p+a) Py, (a) 4+ A Pyri1 (a -—I—)\C’ Z' bN szv’l (a)
+MZ€JM Pn+M,r (<>C )=o0 ' (">0:T<J') ',(ﬁ)l
(7‘+#+a) Pn,J(a) +'\0 2 bNPn-—Nl (a) +F« 2 dM Pn+Mg (a) =0 ’
' \ (n>o) @
""(/\'i'.' a) o,r(“) +APor(“) +)‘P0,r+l (“) +#Z‘ZM 2 Pmr(“)'f"or =0
' ‘ o 4‘<j) o (8
—(A+a)Po, a)+»»21dm ZPM<a>+0 mo i)
Let us define the followmg generatmg functlons : o ‘

Q. (x; a) Z' w P,y ()

F (z, y;a) == Z’an (2 @) '

fn=0

Mult:plymg the set of equa.tmns (6) to (9) by apprppnate powers of z and y and summmg
up over n _and r we get, ;

{—-—A-{-y,—f—a)-l- —)‘—+pD y)} F(w,y,a)

—2 { 1——B(y) C(w) } n_o Pnl(“')

ir m M JM I
ture 3T (’yM—-—y"n, (a>+0<w>—-o (10)
r=1 M=1 n=o ?I’ o . .

Where \
0 (@) - Z C, o
r=1 .. - - v

and D (y) =M{ (dmlyM) ‘
Choosmg @, such that the coeﬁiclent of F (z, y; a) in (10) becomes Zero, helps us in

' evaluatmg o P,., (a). A_ccordmgly, if we puf

n=Q
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and simpiify, .we get

x =

G(go)= Z g Pu(a)
ﬂojr m, M=l . ’ -
w 57 F T B (e, (a)+ O(Y)
r=1 U=1 n=o Y ‘ (”)
A{1l—B(y)C(Y)}
Substituting this value of & (; «) in (10) and putting # =1

we obtain

F (l,y;0) = E ¥ Q@ /(l;u)

o

ey | | R
Z Tz ZE (Mg ) Py (a)— A {1—B(y)i6 (gio) + 1
M=t n=0 Y

p{il—D(y)}+a

' J : o
Where @ (1, ) = 2 Py, («) is the Laplace transform of the probability that there are
=1

I <
'I_l‘ |

7

(12)

n units in the queue at time ¢. The generating function (12) of the Laplace transform of the
queue length probabilities is uniquely determined if the m,j unknown probabilities
. —1 \ -

P, (@), =0, 1,2,..m; r=1,..5) in_ the numerator of G (y; &), can be determined.
For this purpose we shall make use of the fact that G (y; a) is convergent inside
the unit circle |y | =1. By using Rouches theorem it can be shown that the
denominator of (11) has m_j zeros inside and m, zeros outside the wnit eircle. For
G (y; o) to be regular inside |y | = 1, the zeros nf the numerator and denominator
of (11) must coincide at least inside |y | =1, i.e., the numerator-must vanish for the
zeros of modulus less than unity of the denominator. This condition gives rise to a set of
m,j linear equations
\ joorome ML g M n

w 2 Y, X z -T(yi—“yi)Pn,r(“)+'0(Yi)=o

r=1 M=1 n=o Yy ) - -
: _ (6=1,2, .oc.mi) - (19

Where ; are the toots of modulus less than unity of the equation 1 —B (y) C(Y)=o0
and ¥Y; =A/{(A+4 p+a)—pD(y;)} Thesetof equations (13) will uniquely deter-
mine G (y; a) and hence F (1, y; ) provided the m,j equations are linearly independent.
We proceed to show that this condition is satisfied for the case of single arrivals and
tixed batch size for service and try to specialise the results for Erlangian arrivals.

Single arrivals and fived batch, size for service—In this case, we have by = 1 and
by =o for N# 1 and dy = 1for M =8 (say) ‘
= o for M # 8. (11) reduces to
8—1 J r 8
— £ 2 Y (y5—y™) Pny(a)+ C(Y)
@ (g a) =L mmorml o , | (14)
: S Afi—gOo(Y)r . \ S

“where ¥ =AyS/§{(A+ p+a)yS— p}, and the set of equations (13) reduces to
4 p Y —py q

- N
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poooz 21 Y (4 — %) Py (a) + 4 C (¥ ) =0 —
' ' =12 ..., 8 (15)

where y; are the roots of modulus less than unity of the equation 1—y C(y) =0. It can'be
shown in this case that the Sj equations are linearly independent if we assume all the Sj
zeros of modulus less than unity of the denominator are sifiple for, the determinant of té
coefficients of P, (a) in.(15) can be shown to reduce to

A A N A s VI 1A pySiu=n+r{ Ly ..... g%
: 3 g g B3 =t
Tl@tetaw =t ) T

..............

S+1)j(j—1 8 s ; ; 1
$EEDIG=D) B5-n 41 § A=l

=(=1" (A i | ‘ =
B - ) Mo g H (i —y)
| SR CETE DL ETE S
1]

It will be seen from this that A will be nonvanishing and therefore the Sj eqlig.tions are
linearly independent provided y; # o, 1 or 4 # y; for all ¢ and j. It will be shown below

that in the case of Erlang arrivals all these conditions are fulfilled.
The generating function of the Laplace transform of the queue length ,probabilities
is given by (12), when b = 1 and dg = 1 are substituted, as’ o o

| | B 2B =) Py (o) 417 = Ay e
FLgx) = —= (pt+a)y?—up - e

The Lpplace transform of the mean number of units in the queus at time ¢ is given by

-(%—F(l, y;a)\y=1=—§-{ b 2 X (s=m) Pay (o) 16 (L 0) p—Bulat (17)
) m=o0 r=1 :

Particular case—Let the arri%gl time distribution be k—,—Erla.ng 71,'.;3., C, =1 for
r=kand C, =0forr #Fk. ‘ :
Then we have

S8 &

e > > (g}g——yf") Pos @g-yh

m=0 re=1

G0 = 18
: . | A{1_yy"'} . m

where

Y= {A+uta)y —p | . |

We shall show that G(y ; «) can be uniquely determined in this case. First it will be shown

that the Sk zeros of the denominator are simple provided | « | > A — uSk. For, the
y ) > /’ . B 3 F
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zeros of the denominator will be ‘simple if the equations A¥ ¢S+ 1 = ¢ A+-pto) y¥ —plt
and (Sk + 1) A% 4% = kS A+p+a)yS— {(A+-p+a)yS — pi#-1, are not satisfied by any

y whose modulus is less than unity. Dividing and simplifying we get yS = —E/\—(_{ig—i_%-—_i_?l—) )
B R I T
the possible repeated zero. Therefore, if PR > 1 there will be no multiple

izeros inside and on the unit circle. Now u (St +1) > | A4 p -+ | and since
A pta ] > | AMpl—]a|, pSE+1)>A4p—|a|te, | | >A— uSk. Therefore
if o is chosen to satisfy- this condition, which is always possible, since we require R, («)>0,
the zeros inside the unit circle will be simple. ' : \

. Now, the "Sk equations to evaluate the Py, («) in the numerator of G (y; «) are

S 8= k.7 s m 8 <k oo
po 2 21 Yi i — 4 )Pmp ) Fy Yi =0 (=12 ...... Sk) -+ (19)
m=o r= i . . . -
where y; are the Sk simplg zeros of the denominator which lie inside the unit circle. - These
équations will be linearly independent, if the determinant A of the coefficients of Ppy ()

- in (19) is nonvanishing. It can be shown that A will reduce to

8

. B(84-L)k(k—1) _'g_fcﬁ(k—l)+l % , Yi (?/1 .__1) Sk

- P % ,ﬂl( Yi—Y )
TiAtpt) g — el
since 95 # 0 or.1 and y; is different, A # 0, and hence Py, (o) [m =0, 1,2,.... S—1:
r =-1, %,....k] can be uniquely determined.. - :

The ex‘plicit solutions, by inverting the generating function, is difficult to obtain, and
“hence lyet us restrict ourselves to the simplest case in which the units arrive according to a

-l Ow

. L A
Poisson distribution, i.e., we take k=1. In this case @ (y;0) = F(Lye) = C ()0 —Y)

N . p .
where y, is the root of modulus greater than unity of the equation ys+ (At 48
4 pi=0and C (o) is to be determined. By putting y =1, it is seen that C (e)=

A - : ‘ 3

(5o —1) /oc.‘van’d' hence @, (1, «),.the Laplace transform of the probability that there are »

' ' ‘ (’\_1) —(n+1) -‘ -

~units in the queue, is given by ?/_oo_c___ y : _

In this case explicit expressions for the time dependent probabilities can be obtained by
following the method outlined by Luchak and Jaiswal.

 STEADY STATE SOLUTION

By supressing the time suffix ¢ in equations (1) to (4) and equating the left hand side
to zero and defining the generating functions @ () and F(x,y) similar to the ones defined
for the time-dependent case, one can obtain the generating function of the state probabi-
lities or they can be obtained by using the well-known property of the Laplace trans-
form: Lim f () = Lim a f («), provided the limit on the left hand side exists. Applying this

’ ) a—=>0 ' ‘ :

to (11) and (12) we get

L4
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rom, M—1 d.M

i » L
w2 Y 2 = " =y )pnr
o z. " = 1=l M=l n=0 ¥ ’ -
G =2 NII—B ) C(7); 0
and ’ : . (
- m, M1 dM :
wEEE Wyt — N 1—B()1G ()
F (y) = r=] MB=1 Nn=0 . : . (21)
‘ pil — D ® : B ,
where ¥ = A/{ (A 4+ #) — p D (y) . The evaluation of m, j unknown probabilities D
(n=0,1....my —1; r=12...... J) in the numerator of (20) is done by making use of

“the condition that G(y) must be convergent inside the unit circle. By putting ¥ = 1/a;
bu = p, inl—B(y) C(Y), we get equation (21) of Miller®, and it can be seen that
this equation has m,j — 1 zeros inside, one on the unit circle and n, zeros outside it.
Using these m,j — 1 zeros inside the unit circle we get m_j — 1 numerator equations
in m, j unknowns. Further the fact that F (1) = 1 gives rise to one more equation. Thus
we have m,; equations in m,; unknowns and this should suffice to uniquely determine
the p,, and hence G(y) and F(y). We shall presently see that in the special cases G(y) and

- F(y) could be uniquely determined. Before proceeding to the special cases, we would like
to express G(y) in terms of the zeros of the denominator of (20) that lie outside the unit
circle.

+ Let w45 ....Yn, be the n, zeros of 1—B (y) C (Y) =0 that lie outside ly] =1
Then it is easily seen that ; .

6= w—y | B

where A4 is a constant to be determined.
- Putting y = 1in (22), we get

¢ () =4/ (4 — 1) : (28)
and therefore
Gly) ol (%—1) | a0 -
G 1 = © == - ; — : - . )
( ) 2 pn,l . 1 y Y
1 =0 ’ >

which defines the generating function of the stationary probabilities
o = Pt | S pay, (0 = 0,12....),

7, being the probability that there are n units in‘the system just before a new arrival takes
place. This agrees with the stationary distribution jw, ; obtained by Miller® forn, =1,2
and 3. ‘ T

It may be mentioned here that the above analysis points out to the fact that the
stationary distribution {m, of the probabilities that there are % units in the system
just before an arrival takes place is the same for both the ordinary and transportation
type of bulk queuing processes. This is similar to the result obtained by Jaiswals,
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Special Cases: Single arrivals and fived batch szze for service—Putting b;=1 and d; =1
- a8 we did earlier, G(y) and F(y) reduce to : o o _

po 8=l i L
& 22 Y —ym) pmi

. - Y m=0 r=1
G(y) = : A{l—y C"Y)} (28)
and ) ’ ‘ ‘ ; (
8~1 34 '
e 2 I ey VPmy — 295 (1 —y) G(y)
Fy = - ‘ p (yg 5 — ‘ ) -~ ‘ (23)

whete ¥ = Ay* [ {A+ wy® — u} ,

©_ The §—1 zeros of modulus less than unity of 1—y O(Y), when substituted in the pumerator

of ¥(y), give rise to the following set of ;/S’j—l homogeneous linear equations in & unknown!s
8~ j ' :

Z 2 Y~ g Py =0 G=12........ 8j—1) @7
m=0 r=l : - )

By putting y=1 in (26) and using the condition F(1)=1, we obtain
P . ) . , . .
z 3 8 —m)Pp, =8 —Ap f? r C, " - (28)
m=0 re=1 r=1 : oo

Equation (28) along with (27) will uniquely determine the p,,, and hence G (y) and
F(i() provided the above set forms a consistent set. In the case of Erlang arrivals considered
below it is shown that this condition is satisfied. It may be noted that for the existence of a
- ] .
steady-state solution it is necessary that Sp 2 7 €, > X for, otherwise (28) becomes
ol (0L, ouherw J0Tes
- negative.

The mean number of units in the system is given by

1 81 \ A8 +1 A ro
F(l) = -5 mfo rz'=1m (S ~—m) ?,, + —(—2"*;—3—)— G (1) +—;§— @1 (29

Particular case—Let us consider & k-Erlang arrival distribution s.e., €, =1for r=Fk
and C, = 0 for 734 k. ' )

In this case

. 8= kg '
yl:; mZ' 0 rfl YS v — ) p'.”’” ;o
G(?/) = = X {1—yYF 3} y g ' (30)
S—-lv k k -
o e ZE 2 W—y)p, — W (1—yEQ
Fo = e 5= — . @y

* Proceeding on the same lines as in the time-dependent case, we can show that the
denominator of (30) has no multiple roots of modulus less than unity provided u S% > A.
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This conidition has to be satisfied for the steady state as already pomted out. If % (v,_. 1,2.

. .8 — 1) are the roots of modulus less than unity, then equations (27) and (28) for
Ic-Erlang case will be consistent provided the determinant A of the Qogﬁc;mm of Prr
nonvanmhmg In fact, it can be shown that /\ reduces to

i S(8+1)k(k—1) +se p1 1k 8kl g g — 1) Sb—-l ‘ '
=n— & P Hi U (% 1 ﬂl % — 4 )

: ((}\ + .“’)?/’ - l"‘ } i<j . -
since ¥; 'aéO or L and since no two y; ; are equal, A is nonvamshmg and hence the pm,»
can be umquely determmed. ' S
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