DISTRIBUTION OF THE RESIDUAL ROOTS IN PRINCIPAL COMPONENTS ANALYSIS

A. M. KSHIRSAGAR

Defence Science Laboratory, Delhi

The distribution of latent roots of the covariance matrix of normal variables, when a hypothetical linear function of the variables is eliminated, is derived in this paper. The relation between the original roots and the residual roots—after elimination of ξ , is also derived by an analytical method. An exact test for the goodness of fit of a single non-isotropic hypothetical principal components, using the residual roots, is then obtained.

Let $x' = [x_1, ..., x_p]$ be a (row) vector having a p-variate normal distribution with zero means and variance-covariance matrix Σ . There is an orthogonal matrix

$$L = [l_{ij}] = [l_{(1)} | l_{(2)} | \dots | l_{(p)}]'$$
 (1)

such that

$$\Sigma = L' \ diag. (\sigma_1^2, \ \sigma_2^2, \ \ldots, \ \sigma_p^2) \ L \tag{2}$$

where σ^2_i $(i=1,\ldots,p)$ are the latent roots of Σ and $l_{(i)}$ are the corresponding (column) latent vectors (diag. stands for a diagonal matrix, the elements of which are written in the adjoining bracket). If the roots are arranged in descending order of magnitude as

$$\sigma_1^2 \geqslant \sigma_2^2 \geqslant \ldots \geqslant \sigma_p^2$$

then

$$y_i = l'_{(i)}x \tag{3}$$

is called the i-th principal component. The transformation

$$y' = [y_1 ..., y_p] = x' L'$$
 (4)

to the principal components shows that the y_i are normal independent variables with zero means and variances σ_i^2 .

Let

$$X = [x_{ir}] \qquad i=1,\ldots, p \\ r=1,\ldots, n$$
 (5)

be a sample of size n from the distribution of x. The maximum likelihood estimate of Σ is $\frac{1}{n}$ A, where

$$A = [a_{ij}] = X'X \tag{6}$$

is the matrix of the sums of squares and products of the sample observations. There exists an orthogonal matrix G,

$$G = [g_{ij}] = [g_{(1)} \mid g_{(2)} \mid \dots \mid g_{(p)}]'$$
 (7)

such that

$$A = G'diag. (\theta_1^2, \ldots, \theta_p^2) G$$
 (8)

where

$$\theta_1^2 > \theta_2^2 > \dots > \theta_p^2$$
 (9)

are the latent roots of A and $g_{(i)}$ are the corresponding latent vectors. Then $\frac{1}{n}\theta_i^2$ are the sample roots and

$$Z_i = g'_{(i)} x \tag{10}$$

are the sample principal components. They are the maximum likelihood estimates of the corresponding population parameters. The sample variance-covariance matrix of

$$Z' = [z_1, z_2, \ldots, z_p] = x' G'$$
 (11)

is obviously

$$\frac{1}{n} \operatorname{diag.}(\theta_1^2, \ldots, \theta_p^2) \tag{12}$$

A SINGLE NONISOTROPIC PRINCIPAL COMPONENTS

If all the roots σ_i^2 are equal, the variation of the x's is isotropic. However, if all the roots except σ_i^2 , the largest root, are equal, the variation is not isotropic. It is so because of y_1 , the first principal component. Hence y_1 is called the single non-isotropic principal component. There is no loss of generality in assuming the common value of all the roots, except σ_i^2 , to be unity. In the case of such a single non-isotropic principal component, Σ is completely determined by σ_1^2 and l(1) the direction vector of y_1 . Such a situation arises in factor analysis if there is only one (common) factor besides the specific factor in a factor-structure. If this is the case, the problem of testing the goodness of fit of a single non-isotropic hypothetical principal component arises. Thus, if h'x is a hypothetical function, we desire to test the hypothesis that h'x is the same as the true non-isotropic component l'(1)x. Since in the population, when l'(1)x is eliminated, the remaining roots σ_2^2 , ..., σ_p^2 of Σ are equal, one feels that the criterion of the hypothesis can be based on the 'residual' sample roots of A when the hypothetical function h'x is eliminated. The relationship of the original roots θ_i^2 and the residual roots ϕ_k^2 of A is obtained here,

RESIDUAL ROOTS

The hypothetical function $\xi = h'x$ can be expressed in terms of the sample principal components Z by using (11). Thus

$$\xi = h'x = h'G'z = w'z = w_1z_1 + \dots + w_p z_p$$
 (13)

where,

$$w = Gh \tag{14}$$

se as this and other

and we assume that for normalization

$$w'w = 1 \tag{15}$$

The conditional covariance in the sample between z_i and z_j when ξ is fixed is (from 12)

Cov.
$$(z_i \ Z_j \ | \omega' z) = \text{cov.} (Z_i, Z_j) - \frac{\text{cov.} (Z_i, \omega' z) \text{cov.} (Z_j, \omega' z)}{V(\omega' z)}$$

$$= \frac{1}{n} \delta_{ij} \theta_i^2 - \frac{\omega_i \theta_i^2 \cdot \omega_j \theta_j^2}{n \sum_{\omega_i} \omega_i^2 \theta_i^2}$$
(16)

where δ_{ij} is the Kronecker delta and i, j run from 1 to p. The conditional covariance matrix of the z's when ξ is fixed is, therefore,

$$\frac{1}{n} \left[\theta_i^2 \ \delta_{ij} - \frac{1}{\lambda^2} \ \omega_i \ \omega_j \ \theta_i^2 \ \theta_j^2 \right]$$
 (17)

where

$$\frac{1}{n} \lambda^2 = \frac{1}{n} \sum_{i=1}^{p} \omega_i^2 \theta_i^2 = \text{the sample variance of } \xi.$$
 (18)

The latent roots of the above 'conditional' covariance matrix of the z's when ξ is eliminated are called the residual roots of the x's. The idea of residual roots is originally due to Williams²; he derived them by considering the intersection of the ellipsoid

$$\frac{z_1^2}{\theta_1^2} + \ldots + \frac{z_{\frac{n}{p}}}{\theta_{\frac{n}{p}}^2} = 1$$

and the hyperplane

$$w_1 z_1 + \ldots + w_p z_p = 0$$

However, this geometrical derivation can be replaced by the above analytical method. Thus the residual roots are $\frac{1}{m}$ times the roots of the determinantal equation in ϕ^2 :

$$\left| \theta_i^2 \ \delta_{ij} \ - \ \frac{1}{\lambda^2} \ \omega_i \ \omega_j \ \theta_i^2 \ \theta_j^2 - \phi^2 \ \delta_{ij} \right| = 0 \tag{19}$$

This equation simplifies to

$$1 - \sum_{i=1}^{p} \frac{\omega_{i}^{2} \theta_{i}^{4}}{\lambda^{2} (\theta_{i}^{2} - \phi^{2})} = 0$$
 (20)

and can also be written as

$$\sum_{i=1}^{p} \frac{\omega_i^2 \quad \theta_i^2}{\theta^2 - \phi^2} = 0 \quad \text{as } \Sigma \quad \omega_i^2 \quad \theta_i^2 = \lambda^2$$
(21)

Let ϕ_k^2 $(k=1,\ldots,p-1)$ be the roots of this (p-1) th degree equation in ϕ^2 . Collecting the coefficients of $(\phi^2)^{-p-2}$, $(\phi^2)^{-p-2}$ and the constant term, it can be easily shown that

$$\prod_{k=1}^{p-1} \phi_k^2 = \frac{1}{\lambda^2} \prod_{i=1}^p \theta_i^2 \tag{22}$$

and

$$\sum_{i=1}^{p-1} \phi_{k}^{2} = \sum_{i=1}^{p} \theta_{i}^{2} - \frac{1}{\lambda^{2}} \sum_{i=1}^{p} \omega_{i}^{2} \theta_{i}^{4}$$
 (23)

From (21) Williams² has proved that

$$\omega_{i}^{2} = \frac{\frac{\lambda}{\theta_{i}^{2}} \prod_{j=1}^{p-1} (\phi_{j}^{2} - \theta_{i}^{2})}{\prod_{j=1, j \neq i}^{p} (\theta_{j}^{2} - \theta_{i}^{2})}, (i = 1, \dots, p)$$
 (24)

DISTRIBUTION OF THE RESIDUAL ROOTS

Since ϕ_k^2 $(k=1,\ldots,p-1)$ are the residual roots, i.e., derived from a conditional covariance matrix, it is obvious that their distribution is the same as those of the original roots θ_i^2 , with n replaced by n-1 and p by p-1. The more important distribution is, however, of the original roots θ_i^2 and the residual roots ϕ_k^2 when λ^2 is held fixed. Fortunately it so happens that this latter distribution does not involve the nuisance parameter σ_1^2 and is, therefore, useful for deriving exact tests. This is so because λ^2 is a sufficient statistic for σ_1^2 . We obtain this distribution under the null hypothesis:

 $H: \Sigma$ has one root $\sigma_1^2 > 1$; the remaining roots are all unity and the principal component corresponding to this root is the assigned function $\xi = h'x = w'z$. (25) Since A is the matrix of the sums of squares and products (S.S. & S.P.) of the sample observations on x, it follows from (4) that the S.S. & S.P. matrix of the true principal components y is

$$B = LAL' (26)$$

The variance-covariance matrix of y is diag. $(\sigma_1^2, 1, ..., 1)$ and hence the distribution of B is the Wishart distribution

const.
$$\left| B \right|^{\frac{1}{2}(n-p-1)} \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma_1^2} b_{11} + b_{22} + \ldots + b_{pp} \right) \right] d B,$$
 (27)

where dB stands for the product of the differentials of the p(p+1)/2 distinct elements of B. From (4) and (11)

$$y = L G' z = Wz \tag{28}$$

where

$$LG' = W = [W_{ij}] \tag{29}$$

W is orthogonal because L & G are so, i.e.

$$W W' = I_p , (30)$$

where I_p denotes the identity matrix of order p. From (28), the true non-isotropic principal component is

$$y_1 = w_{11} z_1 + \ldots + w_{1p} z_p \tag{31}$$

The assigned function is $\xi = w'z'$. Hence if H of (25) is true the two vectors w' and $[w_{11}, \ldots, w_{1p}]$ are the same. Also from (26) and (8) with (29) we have

$$B = LAL' = LG' \operatorname{diag.} [\theta_1^2, \dots, \theta_p^2] GL' = W \Theta W'$$
(32)

where

$$\Theta = diag. (\theta^2, \ldots, \theta_p^2)$$
(33)

In the distribution of B, transform from B to Θ and W by (32) and (30). Since W is orthogonal, there are p(p+1)/2 constraints on the elements of W and only p(p-1)/2 elements are functionally independent. They can be taken to be W_{ij} (j > i; $i, j = 1, \ldots, p$). We shall denote by dW, the product of the differential of these p(p-1)/2 elements. The transformation from B to Θ and W is unique only if we further impose the condition $w_{ij} > o$ for all i. The Jacobian of this transformation 3,4 is the absolute value of

$$\prod_{i \neq j} (\theta_i^2 - \theta_j^2) \div \prod_{q=1}^{p-1} w_q$$
 (34)

where Wq is the matrix of the first q rows and q columns of W. The joint distribution of Θ and W, therefore, comes out to be

$$\operatorname{const.} \ p \ (\Theta). \ \overline{\sigma_1}^n \exp \left[-\frac{1}{2} \lambda^2 \left(\frac{1}{\sigma_1^2} - 1 \right) \right] \prod_{q=1}^{p-1} |W_q| d\Theta dW. \tag{35}$$

where 5 or 6

$$p(\Theta) = \prod_{i=1}^{p} \left\{ (\theta_i^2)^{(n-p-1)/2} \exp\left(-\frac{1}{2} \theta_i^2\right) \right\}_{i < j}^{\pi} (\theta_i^2 - \theta_j^2)$$
 (36)

We shall now integrate out all the elements of W, except those in its first row, viz, w_i $(i = 2, \ldots, p)$. For this we need

$$I = \int \frac{1}{\mid w_q \mid} dw_q \tag{37}$$

where

$$W'_q = [w_{q, q+1} \ldots w_{q, p}]$$
 (38)

and the range of integration is such that $ww'=I_{x}$.

Let

$$\triangle$$
 = the matrix of the first q -1 rows and p columns of W , and C = The matrix of the first q rows and p columns of W

$$= \left[\begin{array}{c|c} w_q & \frac{\Delta}{w'_q} \end{array} \right]_1^{q-1} \tag{40}$$

Hence

$$C C' = I_q = W_q W'_q + \left[\frac{\Delta \Delta'}{w'_q \Delta'} \right] \frac{\Delta w_q}{w'_q w_q}$$

or

$$W_q W_{q-1} = \left[\frac{I_{q-1} - \Delta \Delta'}{-w'_q \Delta'} \middle| \frac{-\Delta w_q}{1 - w'_q w_q} \right]$$
(41)

Taking determinants,

$$|W_{q}| = (1 - w_{q} D w_{q})^{\frac{1}{2}} |I_{q-1} - \Delta \Delta'|^{\frac{1}{2}}$$
(42)

where

$$D = I_{p-q} + \Delta' (I_{q-1} - \Delta \Delta')^{-1} \Delta = (I_{p-q} - \Delta' \Delta)^{-1}$$
 (43)

Let D=T T' where T is a lower triangular matrix. Transform from w_q to $m_q=[m_{q,\,q+1},\dots,m_{q,\,p}]'$ by

$$m'_{q} = w'_{q} T \tag{44}$$

The Jacobian of the transformation is

$$|T|^{-1} = |D|^{-\frac{1}{2}} = |I_{p-q} - \triangle' \triangle|^{\frac{1}{2}} = |I_{q-1} - \triangle \triangle'|^{\frac{1}{2}}$$

$$= |w_q| (1 - w'_q D w_q)^{-\frac{1}{2}} = |w_q| (1 - m_q' m_q)^{-\frac{1}{2}}$$
(45)

Hence

$$I = \int (1 - m'_q m_q)^{-\frac{1}{2}} dm_q = \frac{\prod^{(p-q+1)/2}}{\Gamma^{(p-q+1)/2}}$$

Proceeding in this manner for all q from p-1 to 2, for integrating out elements of w, except w_{i} $(i=2,\ldots,p)$, we obtain the joint distribution of Θ and w_{i} $(i=2,\ldots,p)$ as

const. p
$$(\Theta)\sigma_1^{-n} \exp \left[-\frac{1}{2} \lambda^2 \left(\frac{1}{\sigma_1^2} - 1 \right) \right] \frac{2}{w_{11}} d\Theta \prod_{i=2}^p dw_{1i}$$
 (46)

where

$$W_{11} = + (1 - w_{12}^2 - \dots - w_{1p}^2)^{\frac{1}{2}}$$
 (47)

as W is orthogonal.

We are deriving the distribution of θ_i^2 and ϕ_k^2 under the null hypothesis H and so $w_{i} = w_i$ for all i, where the w's are the coefficients in the assigned function ξ . We now transform from the w_i ($i=2,\ldots,p$) to ϕ_k^2 ($k=1,\ldots,p$ -1) by (24). We find on using (22)

$$\frac{\partial}{\partial \frac{W_i^2}{\phi_k^2}} = \frac{\omega_i^2 \ \theta_i^2}{\phi_k^2 \ . \ (\phi_k^2 - \theta_i^2)}$$

or

$$\frac{\partial W}{\partial \phi_k^2} = \frac{\omega_i \ \theta_i^2}{2\phi_k^2 \cdot (\phi_k^2 - \theta_i^2)} \text{ for all } k \text{ and } i.$$

The Jacobian of transformation from w_i ($i=2,\ldots,p$) to ϕ_k ($k=1,\ldots,p-1$) comes out to be (after a little algebra) the absolute value of

$$\frac{\text{Const.} \prod_{i} (w_{i} \mid \theta_{i}^{2}) \prod_{i \neq j} (\theta_{i}^{2} - \theta_{j}^{2}) \prod_{k \neq k} (\phi_{k}^{2} - \phi_{k}^{2}) \prod_{i \neq k} (\phi_{k}^{2} - \theta_{1}^{2})}{W_{1} \theta_{2}^{1} \prod_{k} \phi_{k}^{2} \prod_{i} (\phi_{k}^{2} - \theta_{i}^{2}) \prod_{i, i \neq 1} (\theta_{1}^{2} - \theta_{i}^{2})}$$
(48)

where $h, k = 1, \ldots, p-1$ and $i, j = 1, \ldots, p$. The joint distribution of Θ and φ_k^2 $(k=1, \ldots, p-1)$ therefore comes out to be

$$\text{Const.} \quad p\left(\Theta\right) \exp\left[-\frac{1}{2} \ \lambda^2 \left(\frac{1}{\sigma_1^2} - 1\right)\right] \prod_{i} (w_i \ \theta_i^2 \) \prod_{i \neq j} |\theta_i^2 \ - \theta_j^2| \prod_{k \neq k} (\ \phi_k^2 - \phi_k^2 \)$$

$$\frac{\sigma_{1}^{n} w_{1}^{2} \theta_{1}^{2} \prod_{k} \phi_{k}^{2} \prod_{k} |\phi_{k}^{2} - \theta_{i}^{2}|}{\prod_{k} |\phi_{k}^{2} - \theta_{1}^{2}| d \Theta d\phi} - \frac{\prod_{k} |\phi_{k}^{2} - \theta_{1}^{2}| d \Theta d\phi}{\prod_{i \neq 1} |\theta_{1}^{2} - \theta_{i}^{2}|}$$
(49)

where $d\phi = \int_{k}^{\infty} d\phi_{k}^{2}$. Substitute for all w_{i} from (24) in terms of θ_{i}^{2} and ϕ_{k}^{2} and use (22). After a little simplification, (49) reduces to

Const.
$$p(\Theta) \exp \left[-\frac{1}{2} \lambda^2 \left(\frac{1}{\sigma_1^2} - 1 \right) \right] (\lambda^2)^{p/2} \prod_{h \neq k} |\phi_h^2| - \phi_k^2 | d\Theta d\phi$$

$$\frac{\sigma_1^n \prod_i \theta_i \prod_{k,i} |\phi_k^2| - \theta_i^2 \frac{1}{2}}{k,i}$$
(50)

Since λ^2 is the s.s. of the sample observations on y_1 , which is N $(0, \sigma_1)$, λ^2/σ_1^2 has a χ^2 distribution with n degrees of freedom. Hence the conditional distribution of Θ and ϕ when λ^2 is fixed is obtained by dividing (50) by the distribution of λ^2 . On using (22), it comes out as

Const.
$$\frac{\prod_{k=0}^{n} (\phi_{k}^{2})^{\frac{n-p-2}{2}} \exp(-\frac{1}{2} \frac{\Sigma}{i} \theta_{i}^{2}) \frac{\prod_{i \neq j} |\theta_{i}^{2}| - \theta_{i}^{2}| \frac{1}{h \neq k} |\phi_{h}^{2} - \phi_{k}^{2}| d\Theta d\phi}{\exp(-\frac{1}{2} \lambda^{2}) \prod_{k, i} |\phi_{k}^{2} - \theta_{i}^{2}|^{\frac{1}{2}} d\lambda^{2}}$$
(51)

(One of the θ_i^2 and ϕ_k^2 must be replaced by its expression in terms of λ^2 , using (22) but this is not explicitly carried out to preserve symmetry.)

Thus, this conditional distribution does not involve the nuisance parameter σ_1^2 as λ^2 is a sufficient statistic. This, therefore, forms the basis of an exact test for the goodness of fit of the assigned function.

A TEST FOR H

A measure of the total variation of the characters x_1, \ldots $\Sigma \theta_i^2$, the sum of the original roots. When ξ is eliminated, the residual roots are ϕ_k^2 $(k=1,\ldots,p-1)$ and the residual variation is thus $\Sigma \phi_k^2$. The s.s. of ξ itself is λ^2 . Hence, if H is true, we expect

$$U = \stackrel{p}{\Sigma} \theta_i^2 - \stackrel{p-1}{\Sigma} \gamma_k^2 - \lambda^2 \tag{52}$$

to be insignificant. Since U is a function of θ_i^2 , ϕ_k^2 and λ^2 , its distribution does not involve σ_1^2 . In fact, the author has shown elsewhere that U is a χ^2 with (p-1) d.f. This, therefore, is an exact test for the goodness of fit of the assigned function ξ . It should be noted that the hypothesis H, of (25), comprises of two parts.

 H_1 : All the roots of Σ except σ_1^2 (> 1) are unity and H_2 : the principal component corresponding to σ_1^2 is

$$\xi = h' x = w' z$$

A test for H_1 is given by Bartlett^{7,8} or Lawley⁹. The more important part is, therefore, of testing H_2 , which deals with the direction of ξ . An overall test of H, as the author¹ has shown is provided by

$$\nu = \sum_{i=1}^{p} \theta_i^2 - \lambda^2 \tag{53}$$

which is a χ^2 with n(p-1) d.f. For H_2 alone, however, we should use U. It was shown by the author that U and ν —U are independently distributed.

In H_1 , the common value of all the roots of Σ excluding σ_1^2 , is assumed to be unity. However, if this is not so, it is σ^2 and if σ^2 is unknown, we can use

as an F-ratio with (p-1) and (n-1) (p-1) d.f. because, in that case U/σ^2 and $\nu-U/\sigma^2$ are independent chi-squared variables. This, therefore, provides an exact test for H_2 .

A numerical example and the use of U for obtaining confidence intervals has been given in the earlier paper.

ACKNOWLEDGEMENTS

I am very much grateful to Dr. P.V. Krishna Iyer for encouragement and valuable advice. I am also indebted to Dr. C. G. Khatr i for suggesting the method of evaluation of I of (37) and the Jacobian.

REFERENCES

- KSHIRSAGAR, A. M., Biometrika, 48 (1961), 397.
 WILLIAMS, E. J., ibid, 43 (1952), 17.
 OLKIN, "On distribution problems in Multivariate analysis" (Institute of Statistics Mimiograph Series No. 43) 1951, p. 1

- MAULDON, J. G., J. Roy. Statist. Soc., B17 (1955), 79.
 FISHER, R. A., Ann. Engen., 9 (1939), 238.
 HSU, P. L., Ibid., 9 (1939), 250.
 BARTLET, M. S., Brit. J. Psychol. (Stat. Sec), 3 (1950), 77.
- 8. ibid, 4 (1951), 1. 9. LAWLEY, D. N., Biometrika, 48 (1956), 128.