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In this paper the distribution of ab transitions separated by 0,1,2, ....c.o.conen.. o
observations and also of Ty, T',, and 7', for a Markov Chain having two states a and b

has been discussed, The power of these statistics for comparing the randomness of a binomial
sequence against s Markov Chain alternative wherein the .asymptotic probabilities of the
two states are the same for the nuli hypothesis H, (which is possible only when the alternative
hypothesis is a Markov. Chain) has been considered. The relative efficiencies of the various
statistics show that fhe tests based op @b transitions separated by nk observations (when
k is a fraction) will in general be better than Mann and Whitney statistics for testing two
samples where the distributions are not known. . .

In an earlier paper 1 we obtained the first two moments and product momerits for the
number of transitions like aa, ab etc., between adjoining observations of a two-state Markov
Chain. Iyer and Singh? discussed the distribution of the statistics 7', which is the sum
of transitions separated by 0, 1, 2, 3...,....... ", ..r—2 observations for binomial and
multinomial sequences without any restriction on the observations separating them.
In this paper we propose to discuss the distributions of 7', 74, and 7', for a two-state
Markov Chain, We also discuss the distribution of transitions like ab separated by 0, 1, 2, 3,
............ 7 observations which may be defined as transitions of 1,2, ..........(r41)th

order respectively.

(Goodman® has discussed the distribution of ¢-tuple which represents a set of given
consecutive observations defined by n = (uy, #,....7 .. ... ..uy ) where wy, Uy ... ....
are the various states of the mth order Markov Chain. Bhatt* has obtained the first two
moments of t-tuple in discussing the distribution of psi-square defined by Y2 = Z,
[ (ny — my )2/mn] where n, is the frequency of the ¢-tuple in a sequence of length n+-¢—1
and m. its expected value in a new sequence of the same length. Results obtained so far
will not enable us to consider the distribution of 7', ’s. The distribution of T & X,
and the first two moments of the Statistics X; (=Ty), X3, X, 41, Ty, T, and the
relative powers of Mann and Whitney (Wilcoxon) and allied Statistics as compared to
t-test are discussed in this paper. B

DISTRIBUTION OF TRANSITIONS OF DIFFERENTORDER

Discussion of the distribution of the number.of transitions of order (r4-1) and of T, ’s
are extremely complicated and can be done only in matrix form. For the sake of illustration
we shall obtain the difference equations satisfied by the probability generating function
for the distribution of transitions of order 2 and of 7';. The procedure followed here can be
extended readily for the general case. - -
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DISTRIBUTION OF TRANSITIONS OF ORDER TWO X,y

Let ¢ [ n, ( ;% )] where () is the 2X 2 matrix for the states @ and b, be the probability
generating function for the joint distribution of the number -of transitions like (%) of
order 2, for a sequence of n observation. For the sake of simplicity ¢ [ =, ( £ )]is denoted
by ¢ (n) in subsequent discussions. Assume ¢ ;i (n) to be the conditional probability
generating function when thelast two observations arejk. It can be easily seen that
¢ (1) = daa (n) + das(n) + d1a () + o (n) 1)
Further i (n) satisfies the difference equation ¢ ;i (n) =2ty ¢ij (n — 1) (2)

i =aorbd

Tollowing the arguments given in an earlier paper by Iyer® and using (1) and (2) it

csn be seen that ¢ (n) satisfies the difference equation:

E — Py tay 0 — Paa tba 0 ']

— Pab tab E —Pab by, 0

0 p[m t«m E — Poa tba J ¢ (n) =0
0 Pty O B — Py tyy

or { E4 ,_E3 (paa, taa+ pbbtbb) + E2 taa tbb (paa pbb—pab pba) + Epab :pba ( tll(l tbb
— lap tea) (paa taa + Dy tw) — paapbb-pabpba( taatbb - tal,b‘tba)2 té (n) = 0 (3)
The general solution of this equation is given by

4 n
$(n) =2 4, A
=1
Where X’s are the roots of the biquadratic equation (3). A’s are determined by using
the initial conditions. As it is difficult to determine the roots of the above equation it would
be possible to obtain the generating functions by using the difference equation in succession.

A
It may be mentioned that for large values of #, ¢ (n) may be approximated to A X" where

A
X is the maximum root of (3). The moments can be obtained by the procedure developed
by Iyer and Kapur®. We havekoweverobtained the moments from simpler considera-
tions in subsequent sections, :

Before considering the moments we shall show that the distribution can also be obtain-
ed on the following lines which is similar to that given by Goodman’. Assuming that
Na.a, Ma.b, Mh.e 80d 255 be the number of transitions of second order in a given
sequence of 7 observations where the first two initial observations are say, aa and the last
two are, say ab, the transitions for @.a can be considered to be the sum of the triplets aaa
and abe. Similarly a.b, b.a and b.b are the sum of the frequencies for the triplets noted
below:

Na.a = Naga ~+ Naba.

Ngb = Magp + Paba,
Npog == Npan —— Nbba.
Mo = Mbab T Mbbh.

In view of these relations, the second order transitions na.a, %a.5, %.c 80d 7p-p
can arise from all bi-partitions of the numbers #; ;, each partition representing the
number of triplets in the sequence. Thus the probability for second order transitions
can be written by modifying Goodman’s procedure by forming contingency tables.
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CONTINGENCY TABLE SHOWING THE NUMBER OF TRIPLETS IN THE SEQUENCE COMMENCING IN qg AND BNDING
‘ IN ab ’

.Ending observation of the

triplet a j b Total
Ist two observations of the ’

triplet

aa "aaa Paab "sa.
ab’ . Toba Bobb 2.
ba "baa "bab "pa.
bb nbb a nbbb ”[;6,

Total ‘ n, —2 ny "2

The probability for sequences having the triplets indicated in the above contingency
table is equal to

Naa.! Nap.! Moa.! Nep! (e — 2)1mp 1 Mo (s —1)
. Naga | Naba ! Moaa ! Nsa ! Maay ! Narp ! npan 1 mosy 1 (0—2) ! n (0 — 1)
when G is the co-factor of the matrix .
ao ab _ba bb
- " " N
aa 1— 2 0 — Tl 0
Naa. Npa,
Naab n
aa, . ba,
ba ~ 0 — " Paba 1 N
Ngb. o Mpbb,
Nabb n
bb 0o — = 0 1— 2%
L- Nab. b,

obtained by removing the rows for ae and columns for ab. Similarly if it ends in ba, we
remove the rows for ae and columns for ba; for aa it will be aa and aa, for bb it will be bb
and bb. Let these be denoted by G, G,, G3 and G4. The number of possible arrangements is
! . k i
o | My
" The probablhty for each of these tables is obtained by multiplying the number of
arrangements for the respectlve table by
o b ™pab "aba T K
Padeslpan) P a) ) T ()T
The sum of the four probabilities gives the probability for the sequence to begin in (aa).
Similarly the probabilities for sequences starting in b, ba and bb are determined. The sum
of all these sixteen values give the probability for given number of a’s and b’s say 7, and ny,
Similar expressions can be obtained for all possible values of 7, and 7, which are partitions
of n (the number of observations in the sequence).

equal to
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DISTRIBUTION OF T,

Following the same lines as in (¢) we can obtain the d1ﬂ'erence equation satlsfymg the
probablhty generating function for T}, and it reduces to

{E4 B’ (Paa fon “+ Pob t3 )—{-E taa oo (Paa Pob taa tss — P Poa tap Vba)

- E Pab Poa tab toa (Paa taa + P tbb) (taa tbb — tab toa) .

— Paa Pt Pab Poa toa tbb tab Yoa (taa foo — tap tea) } ¢ (n =

~

'The probability generating funetmn for different values of n_can be obtained in succes-
sion from the lower ones. As already mentioned above it is not easy to obtain the cumulants
for the above distribution. We shall, therefore, obtain the moments of this distribution and
_ for others like T, and. T, from other considerations. Using the procedure followed by Iyer
and Kapur, it can be shown that cumulants of 7, are linear in » when 7 is finite and there-
fore the distributions of 7, 75, 7. . .... approaches the normal form asymptotically - for
finite values of r. For large values of 7, it has been found in connection with a number of
‘other mvestlgatmns that the cumulants take the form

v = du(n, 1) ¢ (1)
where ¢y, (n, r) is'a function in » and » of degree 1 of the form ( fn + gr+hyand ¢; (n, r)
is a function in r of degree ¢,

. K 1
B e )] s 00}
K ) ! 1 ’
vy = 24 — b (n Z’)‘fu (r) . ~ 0 (‘n__)
Ky - 12 (n, 1)} s (1)}

_ Hence the distribution of statistics tend to normal form asymptotically for all values
of r. ’ , C - ’
CUMULANTS FOR ab TRA’\TSII'IONQ OF (r+1)h ORDER .

Let (r+1) order statistic be represented by

Xo 1 =L 2 a(2r3) 4 o o(n—ir—1,n)
where x (s, 7+s-+1) stands for transitions between Sth and (r—}—s—i—l)m observation.
Assume 2(s,r+s+41) takes the value 1 if transition is ab, and 0 otherwise. It has been shown?
that for a simple two-state chain, the conditional probability for the s observatlon to be
in state @ or b when the #;; one (t<Cs) is in a gjven state are as follows:
P, (sfta) = (p, + 05— 9/(1—8)
- Pulsln) =pfl—=/(1—8)
Py Gfta ) = (1 — & —9/(1—5)

| Py (sfts ) = gy + ¥ —/(1 — 9) |
where (M) is the transition matrix and 8 = p, ~— p,. Using these results the

192
first two moments of this statistics are given by
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E(Xr+l ) = (n—r — 1) 2@2?18 (1__"8r4-1) S , @
{ Vb b v.r 1,,
V(X 11 )= T&‘la? =& hm—r—1) .
+ _plet (1— & +1y2 (r + 1)r + 5 (2 + 3 . D o
( &)t - )_"’ 7’+ )—_“— n——2i"—3_,
i [rin—3r—3) (n—r—2yFl 1—-1 (n—2r—1
+ (1—5)4{ 2 + S 1—8 — & T—ap 135
Cn—r—2)8 (n—r—2)+2 1—§%—2 1—g—1
B B A (= U G (et
‘ (n — 2r — 1)8% +2 (n— 2 — 1)8r+2 °
- = T T—3 ,
20:0:(p° + 0% [ n—r—2 s L=l (2 — Dt
+ (]——-8 1—3 S (1—9) = ~1___,_‘3 .
e (2n—3}—3)ar+1} )
where ' -
Dn—2’—3—{(%——21’——3)—.—8—5(1_6n_27_3)}

Putting r=0 and 1 we get the moments for X; and X, the first and second order
statistics. They are given below :

BX)=@—1 2 o ®
28 1 :
( 1) —(%——1) lpqus + (172 QI8)2[(—3”+5‘_ '1__8 1_)”—3 } v (7)
BX) = (n—2) {20 (1+8) S e

, 1 8 : 28
'FL(I"“‘%%QL (P11 + 12 + 9,78 +,I’29132) : 9

CUMULANTS OF T’
-1
By definition T, = sz, the ﬁrst two moments for T, T4 and 7, are glven
' k=1 :

below. It is obvious that T, = X1

(v) Ta, the sum of transitions of ab of 1st and an order
MS1—4 ;
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and | R L

V(T = (g0 —7) L2 +(5n-—~12) Mlss = p”I {( 14n+35)

1—
28
— 15 ( w3 + 2Dn__4 +Dn-—5 Y }

9 95 2 232
4 pqua)z {( 10n+29)~—'—-—.‘:—8*( y—a + Dy 5 )1+'£2'g1—“

(I—op
*;fww'%~M+m ngmq}‘ L 1y
(u) Ly, the s oftransztwns of ab of. Ist, ond- a;mz Brd, orders '

B(T) = (31— 6 Mg+ 7ot S —3) (12)
vz = W~WHM1+MH )%%—H9V)J@%

. 95 e
+ (1])2 q18)2 {(—33”&’{' 110)"— —I—:T (Dn——S ~+ 2Dn—-4 + 3Dn—5 -+ QDn—G

| s ) —_Dn——7 )J’
4 - 2,8 ( 34n+125) -»- (D 2D 2D D
- i 3)2 —_ n—t T n——5+ 6+ n—7)
20282 e
x %‘-118__1( 6n + 245) — 2 5 (3Das+ 4Dn—46 + 3Dn—7)} .
4 ““—*fles;z {( 14 +62)—~—( n+e+Dn_7)}+ }(7212{1182{( n +33) 1_3D } |
, ; (13)
(m) Tn, sum of transitions of ab up to order (n — 1 )
~_ aln— Dpagy (0 — 1)dpagy ‘
C BT )= Tym e 1= : S 4
nn — 1 (2%—1 —1)(14-8—28

,2,2 —1)(2n—3
P (?fa)‘EZn )+P2q11 n 8)51) ngqun(n—l)+(n—2)(n—3)

(21922+2912“527291) :

2 8 g »
(719 . 5 {Pz‘h(w—1)2+2(n——2)(n—3)(2]722+ 2g,2 — 5}72‘]])}

o 12pgg, B —3)( a2+ 0,7 3pay)” (15
: (=¥ ' L )
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These moments for T, have been calculated on the basis of results given in Appendix.
It may be noted that T, corresponds to ab transition between successive observations
considered by Goodman’, Bartlett® and others and T', to the Mann and Whitney statistics
U for two samples with the difference that U refers to finite sampling whereas T', refers to
sampling with fixed probabilities.

RELATIVE EFFICIENCY OF DIFFERENT STATISTICS

The statistics T7’s discussed above can be used for testing the randomness of g biro-
mial sequence. Taking for example, a given sequence of observations, each assuming
the states a and b with probabilities p and ¢ respectively, the randomness of the sequence
can be tested by noting the statistics 75, Ty......T, and applying the usual standardised
deviate test for the hypothesis p==p,, q= (1 ~p, ). We may compare the relative efficiencies
of T7’s when the alternative H, is a Markov Chain sequence defined by the transition matrix
(p3 ), % 4,=1, 2, such that asymptotic probabilities for the two states are the same as for
H, Tt will be observed that such an alternative can exist only for a Markov Chain and
does not seem to have been considered before.

Pitman ? has shown that the asymptotic relative efficiency of two statistics 7', and 7', *
which are the functions of a parameter say 8., are given by

Lt 1 ( dpin (6,) )2/ 1 («m *0,) )2
n >0 o, %06,) d, [ 6x*% (8,) e,

where p, (6,) and p, *(8,) are the expected valuesof T', and 7', *and o2, (6,) and o **(6,)
are the corresponding variances of the statistics. Mood ' has shown that thisresult can
also be established by considering the relative changes in the power of the tests for the
alternative hypothesis on the assumption that there is no change in the variances of the
respective statistics under the alternative hypothesis. This assumption is not fully justified.
This can be seen from Table 2 which gives the expected values and variances of the statis-
ties Ty, T'5, Ty and T',, for different hypothesis.

TABLE 2

EXPECTED VALUES AND VARIANCES OF DIFFERENT STATISTICS FOR TWQ STATE MAmkov CHAIN oF sizii 3

Particulars of chain p="'5 p="'5 p='6
q = .5 q = ] q = -4
Statistics 8= -01 8 = -001 § =005
Expected  Variance Expected  Variance Expected -~ Variance
value value value
Ty (= Xy) 7418 1-937 724 - 1.938 6:92 2:062
T, 14-11 4-262 14:24 4:195 1361 4980
T, 20-79 7-160 20:98 7:016 20-06 9.914
T 108:68 600-307 108-74 590:177 104:36 629-866

Table 2 shows that both the mean and the variances change under varying hypothems
In view of the fact that the variances for the two hypothesis also differ, the conclusions
regarding the relative efficiencies of different tests on the basis of Pitman’s results need
further examination. We shall examine the relative efficiencies of the tests based on 7, ’s
by evaluating the, .power of the different statistics taking into account the changes in both
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TaBLE 3.

INCREASE IN POWER (£ +9%/0.2) FOR DIFFERENT STATiSTIOS FOR msnm RANDOMNESS OF A ;BINOMIAL
SEQUENOE AGAINST MARKOV CHAIN ALTEENATIVE SEQUENCE .

Statistics R S
Hymtﬁesi.« ol T=X) n T Ty
e i P q

1 2z 3 s I ‘/6' 1 s
001 - 36 5 5 -002623 -019226 023506 -019097
6 b 000917 - 015466 019138 018877

‘ a5 a5t 004385 007365 -011400 018045

50 5 5 -004629 021020 - -025659 - 019566
6k - -002472 1016672 -020326 -019404°

M5 25, —-003683 007733 -011681 .018028

100 - 5 -5 - +009606 024197 .028661 - -010894
84 000853 018932 022076 019562

5 2 —.001501  -007555  -012133 _  -019551

0:005 ) 30 L 5 000655 009281 -011498 -009497
' 8 4 —001070 007481 © . -009390 -009389
5 95 002484 003601 -005650 -008980 -

50 5 5 001157 -010534  -012396 -009731

6 4 000305 -008238 -009862 009662

75 o2 —-002303  ° 003714 005755 009407

100 -5 5 +002401 .010951 .013454 -000895

’ 6 4 001363 008602 .010441 009731

5 .25 —-001792 - -003945 005892 -000727
0-001 " 30 5 B 000026 -001804 002260 001891 -
8 4 000112 001456 001849 .001870

, 75 -25 . —-000543 000707 .001122 001789

" 50 BB 000046 .001892 1002412 -001938

-6 4 —:000008 ©  -001508 -001926 001885

5 425 —-000541 . -000720 001105 001875

S100 5 -5 -000096 001980 002555 001971
. .4 000088 -001562  -001996 -001938

a5 w25 —-000525 +000733 -001152 +001938
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the expected values and their variances. Recently Bhattacharyyal® has obtained a
general expression for the power of two tailed test based on any statlstws T for an alterna—
tive H, against H as follews : :

P=atk g ¢+ Lyt

— 4__ 2 A2 —
AL SN . o]

for the significance level « defined by :
—it?] ’ =

k 1 2
a=1— f $(t) dt where §(t) = Z— e = 4yq #k)=[$ ()]s

Tt is assumed here that the asymptotic distribution of T is normal with mean and vari-
ance my and o 2 for Hy and m; = my + 7 and 0, = ¢ 2 (L 4 §) for H,.

Using the above expression we find that the increase in power is proportional to {4%?/o 2
neglecting the higher powers of ¢ and 7% The value £ + 7%/0,2 has been tabulated in
Table 3 for the various statistics 7y, Ty, 7y and T, against different two state Markov
Chain alternatives for testing the .randomness of a binomial sequence. As pointed
out earlier it has been assumed that for the Markov Chain alternative the asymptotic
probabilities for o and b i.e. p,/1—8 and g,/1—3 are equal to p and q respectively where

~ pand g are the probabilities of occurrence of @ and b in the binomial sequence.

These powers have also been shown in the graphs 1, 2 and 3. Tt will be seen from the
graph that when p lies between 5and -75, the powers of T, is deﬁmtely more than that
of Ty for all positive values of 8.

For negative values of § the increase in the power is negative for all the statistios
except T, as can be seen from Table 4. The maximum decrease in power is for T'.

, TagLE 4
INCREASE IN POWER FOR DIFFERENT STATISTICS FOR n = 100
Statistics | O v
Ty (= Xy) Ty T, Tn
Alternative hypnthesis
p=-5 . ;
= 5 009609 —+000052 —+022026 ;-019489
§=—-01)
p=-6
q= 4 +009661 —-000708  —-017562 —:019169
§ = —-01 '

The increase in power has also been calculated assuming the null hypothesls to be a
Markov Chain sequence, The results for such cases have been tabulated in Table 5 for a
few hypothesis,
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The approximate efficiency of statistics T, compared to T, - for different positive
values of & and for different hypothesis is given in Table 6. i S

Our previous investigations on random sequences have shown that for #=100, the
power for Ty is maximum and is 148% for Hy: p="5, g="5 and H;: p=-55, g='45and
160% for Hy: p=-2, g=-8and H;: p="15, g=-85. These findings are in line with our
present investigation wherein the alternative hypothesis include various types of -Markov
Chains. Therefore it is clear that tests based on T;, T}, ete. are in general definitely better
than T, : SERUBITS :

014,

ot SN
A\
I . ,/ pLad ‘\\
! '/ . -, N
L 10 > .
zm.‘,

007} -

INCRE_A‘SE IN POWER
g

003t REFERENCES
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ool (1) Pe.8 a5 0 e
50 >----e
o o 100 - e
. o (il)_ P=.6, q=.4 » 30 L e ]
0ot ' o i T ameea
1000 a—- s
{iei) P=2.,75, g=.25 30 .o——o
3 : 500 e--
| 100 > - 2
-+003L
-.008L I - hn : : n 4
T2 Ty . Ty Ts
STATISTICS

Fig, 2—Graph showing the increase in power (£ + 7%/o 2) for different statistics and
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TABLE 6 )
EFFIOIENOY OF Ty AS COMPARED TO T,

Percentage relative efficiency of T, with respect to Tn :

" Hypothesis . -
v n =30 N n = 50 n = 100

Q) p=-5 o o e

g8 o 123 ' 11 144
3= -01 ' '

(2 p=-6 _ |
(= 4 100 ' 102 107
3 = -005

@) p=-15 , .
q=-25 6 59 59
$ = -001

We may now examine how far these conclusions are applicable for comparing two
samples on the basis of Mann and Whitney’s test. In this test, we arrange the two samples
4 and B by pooling them together in ascending or descending order and identifying the
observations as @ and b-according as the observation belongs to 4 and B. We may consider
such a sequence-a binomial one with probabilities p==n,/(n; + n,) and g=ny/(n; + n,) where
n, and n, are the sizes of the samples. If n, and n, are fairly large, the distribution of T,
approximates to that of Mann and Whitney Statistics. . :

Table 7 shows expectation and variance of T, and U for different sample sizes,

TaBLE 7

EXPEOTED VALUES AND VARIANCES FOR Tn & U

Difference of

'i'n | U - | f T, &n(t)if%as %
ny n Expected =~ Variance Expeéted Variance Expected Variance
Sy =2n, value Co value ’ A value
] &0 ‘ 100 1237' 5 21140:6 12500 210417 1:00 0:47
100 200 . 49750 1679060 50000 187500+ 0 0-50 024

200 400 ©1995°0 13383125 - 20000-0 1336666:7 - 025 0-12
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The percentage differen ces in the moments of these two statistics are very small and /
are of the order of 1/n and therefore. the. conclusions arrived at from considerations of
binomial sequences or from th ose of two samples sequences W111 not_differ much from each
other for all practical purposes.- - . :

It would be noted that when the two _samples be_lgn&tg_jzwo distribution functtons
F(z) and G(x) the probability that any of the observatlons say o, of the ordered sequence

belongs to F is_equal to - T ;’:1]). g_x’;z g(‘wr) This. cons1de#at10n shows that t}fe -sequence
can be approximated to a binomial one with probabilities p = —_Itl—n~ Ind.qrﬁ 4”1 jj@—znz

This is true when f (w):g(m). If f (z)#g(x), the changein p can be approximated to p--¢
which is the alternative H, discussed in an earlier paper®. Thus for discussions of relative
power it appears to be more rational and simpler to treat the sequence as a binomial one
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than as an ordered one arising from the pooled n, observations. ~ Therefore the conclusions
based on T, 1is true to a large extent for U also when the forms of F is not definite.

Fazlier investigations show that Ty is more efficient than T, for binomial sequences.
Tt therefore, follows that these tests will be better than U ¢.e. Mann and Whitney’s test.
Investigations of Wetherill'! show that two sample Wilcoxon’s test is a little more
robust than the t-test to differences in population variances. For location, when the popu-
lations are identical but non-normal, Wilcoxon’s test is to be preferred. Comparing these
conclusions with Table 3 it suggests that T and 7, and other extended forms of these
tests will be better than the t-test when the variances are different and the populations are
non-normal, for samples of nearly equal sizes.

Some simple results allied to T, have been discussed by Goodman' and Granger®,
Goodman shows that ab transitions between successive observations will give a sufficient
statistics on estimates of transition probabilities and therefore it may be argued that
no other statistics will provide more information than the simple transitions between
successive observations. This argument does not appear to be valid because in dealing with
a binomial sequence there is only one parameter involved in H, while in the Markov se-
quence Hy, there are two parameters, one for the proportions of @ and b and the other &
which defines the extent of randomness in the sequence. While in H, we confine only to
variation in p, in H, we vary both pand 8. Thus Hjisa case of simple hypothesis whereas
H, is a case of composite hypothesis. Therefore the conclusions arising from maximum
likelihood and likelihood ratio tests do not hold in these cases. :

In view of these considerations there appears to be no inconsistency in our findings
that T whenk < << m,is better than T, and T,. More rigorous studies on the relative
powers of these tests including the case of two samples belong to populations ¥ and G are in
progress and the results will be published in dite course.
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 APPENDIX

Tn this section we give some auxiliary results whléh have beeﬁ used for Calculatmg the
expected value and variance of T . 1t is hoped that the results. Wlll be useful in other similar

mvest1gat10ns _
It can be seen that '

n

E(Ts)= zEk (a) for sequehdes ending in b, ~ | . )
: k=2
where
b1 . .
Ei (a) = ZP(a; b ) : )

g=1 -

k—1

L zp a; P ;)

P (a; bx ) being the probablhty for th and kth observation to be @ and b respectively which
is equal to the probability for ith observation to be multiplied by the conditional pro-
bablhty of kth observation to be b when ¢th one is a. Obviously Ez (a) represents the number
of &’s for a binomial chain of k observation where-in the last observation is b,

For obtaining the variance of 7, we have to evaluate the sum of the expectations for
the different ways of obtaining two as’s from the sequence1 Deﬁmng thls by E, (2, ab)
we can write ’

@ ab) = ZEk (aa)—[— ZEk (ab) + ZEk (aba) + ZEk (aab)  (2)

for sequences ending in b

. where
—2 k-1 k—2
By (aq) = Z ZP (@ @ by ) = z z P ) Ploy fos ) P (b oy )
aijék . :
10—2’ —1 k-2  k—1 .
By )= > zm b be) —Z ZP(az VP fas )P (s [ b5 )
i=1 j=2 i=
i<j<k . a<3<k
b—3 b2 k—1 —3 k=g k=1
Bi@bay= > > SP ba bi)= Pla) P (b fa) @1 by ) Plbo o)
B [y N e B i=1 j=2 1=3 ]
<l<k

@<,7<l<k §<J
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and, - : : L

. 3 b2 k—1 T k8 b2 k—1

Ei(aab) = £ 2 X Plg; a; bl bp)y=2 2 ”P(a,)P a,/a, )P (b Ja; ) P(bs /bl)
==1 ]=2 1=3 g1 j=2 =3
i<g<l<k z<3<l<k

P (aia; b bk ) is the probability for dth, jth Ith, and kth observations to be in
states a, a, b and b respectively. Other P’s are defined in a similar manner.

We now give below the basic results such as Ej (a) and Ez (b) for sequences ending in
band E; (a) and By, (b) for sequences ending in a. These results will be useful for evaluating

any type of configuration e.g., Ex (aa), Ei (aba),......... R e ete.

Sequences ending in b . ' 7
: _ P (Pg,—Qpy) C 18kl (1) SF—1 : i
B = 2 Dot i e — DE 6

Where P and @-are , the initial probablhtles fox the Markov Chain to start with states
a and, b respectively.

o q lp 2%1)2 Dy, as (Pgy — @py)—>0 asymptotioaﬂy » (4) »

aﬁd

, ' ‘ 1—8b—17  (Pg— sk
) = 2] Gvas T - ((f_g?) o s e |

©)
: g1y S |
~ ] =y } ©)

Sequences ending in o

: —8—17  (Pg;—Qp,) sfc+
By (@) = 1p 5){192(76 1)+q18 s j+( 4(1;_682)222) Da +q (k—l)s’c—}
v U ‘ o (N
1 — 81 :
(1 8) {Pz(k 1) + Q18 18 - } | : . _ » ) (8) ;
: Do _ (Pgy,—@py) 181 _
R = = bl SR
 E Dt | “ - )

D= {0 — 3); Sa—s}

E (T, ) can be calculated from (1) by summing it up for all values of & from 2 to n. By using
these we can get the values for E; (ea), E; (ab),........ For example, suppose we are
interested in evaluating E; (aa). Since by deﬁmtlon
b—2 51 _
E; (a0) = 21 272 P (m,) P (a, la;) P (b Ja; ) ' (11)
7 . =1 j= o A
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we can easily 1dent1fy the expression P (a; /a ;) P (b /a ) in the right hand side of (11) with
E}, (a) which is equal to P(a; ) P.(bx /a; ), the only difference being that P (a; )in Ey (@) has
been replaced by the conditional prebability P (a;. o ;) here. Substituting the value of Bz (@)
with this necessary alteration in (11), E; (aa) is obtamed easily. By similar argument values
for By (aba), Ex (aab)........ will be calculated from By (aa), By (ab). .. .etc. Thus by
such successive operations we are able to get values for any type of conﬁgurabmn

For the sake of illustration we also give here the values for those expressions Wthh are
necessary for the calculation of V(T, ) namely E; (aa), Ei (ab), Ei, (aba) .and Ei (aab),

B = el [ 5, E=0E=Y o ws
+ {_’L}?sz_a 'I‘(T—TS%;)'] )
E{;,(ab) * ( N qg)g [q (k‘_‘_f_z);k = 3) + (3321:_;%)3 DH:,
ot = (-1792191;)4 ST s P
L S SR
+ igfg_g_ﬁ wew b=l _al=¥2 )0y
EkA(aab) = (1?i_q‘3)4 [ (P + 0* — pqu) { (k Z—(f)ik ;?’3 _'_'(1 fza)z b,c_;
L G Sy ooy,

From the above expressions E, (2, ab) can be obtained by virtue of ( )
Now since E, (2,ab) is equal to g><second factorial moment! for ab* and also

pg = Mz + /n — (p)?

we geb o :

* Tyer, P.V.K,, Ann: Math. Statist. 29 (1958), 254. e ’ -



