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The problem of a clamped spherical cap with a built-in-edge subjected to a rotationally

symmetric pressure has been considered. = The material of the shell is rigid—perfectly

plastic and obeys the generalized square yield condition. The carrying capacity of the cap has

been’ determined when (i) a uniform pressure is applied over the surface and -(ét)-a concen-
" trated load is applied at the vertex of the cap.

The plastic analysis of rotationally symmetric shellsis of fairly recent origin. The
yield surface for a shell whose material obeys the Tresca yield condition was derived by
Onat and Prager. The corresponding equations for a shell material obeying the Mises’
yield condition were obtained by Hodge?. In addition, two linear approximations have
been proposed by Hodge34. More recently, a much simpler yield condition for a
general rotationally symmetric shell has been proposed by the author® :

"In this paper the problem of a clamped épherical cap subjected to normal pressure is

considered. The material of the shell is assumed to obey the generalized square yield
condition®, =~ . ’ : - :

' Fig. 1-~Element of shell of revolution
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BASIC EQUATIONS

Fig. 1 shows a rotationally symmetric shell element whose state of stress is described
by four generalized stresses: the circumferential and meridional bending moments Mo and
M5 and the circumferential and meridional membrane forces Ng and N .. The shear force
S 13 not considered to be a generalized stress but has the nature of a reaction. The load per
unit area of the middle surface of the shell has the components Pg in the direction of the
meridian and P, in the normal direction. The element has the distance R» from the axis of
revolution and its principal radii of curvature are R, and R,. The generalized stresses must
satisfy three equations of equilibrium which may be written®

(rgn, ) — ring c0s ¢ — 78 + 7Py = 0 1
T 4 rimg sin $ + (res) +rripr == 0
kf(rjm)'—rymg Cos $] — 7,718 = 0 J
where we have defined n=N/N,=N/20 H, m=M|M =M (o H?2, s=8|N, pp = LP$|N,,
pr =LPy [N, r=R/L; o, is the tensile yield stress of the material. The shell is of
uniform thickness 2H and radius R and L is a typical length. Primes denote differentia-
tion with respect to ¢. ’ '

)]

The state of strain is described by four generalized strains which may, in turn, be
expressed in terms of the meridional and normal components of the displacement V and W.
The generalized strain rates and the velocities are related by - :

’

¢ =l (voot g—B) ¢, =" () -

YT e T gy @)
- OO . . I‘

o= s @+ =— 7’1( 7 ) '

The plastic yield condition for a rotationally symmetric shell based on the Tresca
criterion has been described by Onat and Prager!. Hodge® has derived the yield surface
based on the Mises’ criterion. More recently a linear yield condition for rotationally sym-
metric shells has been proposed vy the author’. This yield condition is a linear surface
in four-dimensional stress space defined by the eight hyper planes

max[|ng {» {mp |, 1mp |mg]1<1 )

Two two-dimensional projections of the four-dimensional yield surface are illustrated in
Fig. 2. o
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TFig, 2—Generalised squére’yield condition
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The plastic potential flow rule states that if the stress point is in the interior of the
yield surface (3), then the strain-rate vector

E@ %,eé&._o;

if the stress point is in contact with one of the hyper-planes of the yield surgace then E is
directed along the outward normal of that hyperplane; if the stress point is at the intersec-
tion of two or more hyperplanes, then E must be & linear combination with non-negative
coefficients of the outward normals to the hyperplanes involved; for the considered rigid
perfectly plastic material, the stress pomt can never be outside the yield surface.

Finally, the boundary conditions of the problem must be stated. At the centre of the
shell, isotropy and symmetry demand that

p=0:np =mng,mp =my,s=0 : 4)

(either w=v=0 or there is a hinge circle)
At the clamped edge

¢ = oa: w=0 . ' | (5)

’

(either w="=0 or there is a hinge circle)

~

A hinge cirele is a circle across which w and/or v are discontinuous. A discontinuity

in w is possible if | mg | =1 and a discontinuity in v is possiblé if | ng | =1
CLAMPED SPHERICAL CAP UNDER UNIFORM PREéSURE

If the typical length of the shell is taken to be lts radius, the dlmensmnless radii of the
sphere are

r=ry=1, r, =Sin é ' ‘ 6)

Fig. 3 shows a clamped spherical cap under umfgrm pressure In view of Eq (6),
the equations of equilibrium (1) become

(4

Fig 3—Spherical cap under uniform pressure
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(ng sin ) — ng cos d=ssing

(s sin ¢) + (sin @) (p+ng +np) =0 ' | ‘ (7)
k [(mg sin 4) — mo cos $] = s sin ¢ g

‘ The relations (2) between the velocities and strain rates become
=Vootd —Wp, fp=0—0 | . ®
Zg = — koot § (V4 W), T = — KV + ¥ |

The general procedure for finding the collapse load of a structure is first to make a
hypothesis for the stress profile. For any such hypothesis the equilibrium equations and
flow rule are solved. The resulting stress and velocity fields must thén be examined. The
solution will be statically admissible if the stress profile lies everywhere on or inside the yield
surface. Tt will be kinematically admissible if the strain rate vector is directed outward to
the yield surface and lies between the appropriate limits at a corner. Solutions which are
statically or kinematically. admissible will provide lower or upper bounds respectively,
while the actual solution is distinguished by the fact that it must be both statically and

kinematically admissible.

For the simply supported cap the stress profile was found to correspond to regime 45
of the generalized square yield condition®. Hence for the portion of the clamped -cap near
the vertex, we can anticipate the same stress profile to remain valid. As a first hypothesis,
let us assume that the entire eap corresponds to regime 45. This implies that ng — — 1
and mg — 1. The substitution of the above stress relations into the equations of Equi-
librium (7) and the use of the boundary conditions (4) result in

= — 1, me =1 . ‘ .l'
i = — } [p—(p—2) ser’y] Y o)
mg,> = 1 — 93_2:’6_9- Lsimﬁ log (sec ¢ - tan ¢)-i]f

Since the stress profile is assumed to be everywhere on regime 45, it follows from
Equations (8) that the velocity equations are ' '

= Dooth— W0, = b _D=—p,
“9 v cotd gy 0:, ' = ;:,.4., ] (10)
$e=——k(}0tk¢\('u+w)=[l.5,x¢=—k('v-{—w):::OJ
where p, and pg are _arbi-txa;ry positive multipliers. The solution of Equations (10) which
satisfies the boundary condition (5) is given by :
log (sec ¢ + tan $) ]

log (sec o« + tan &)

I log (secd + tam $) '
v =", s ¢ {1 - log (sec o 4 tam o) ] (11)

W =W_cos ¢ [1—-

’l}o tan 95 . k’bo cot ¢
He == Tog (sec-a - tam «). M5 = "Tog (sec o + tan o)
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where 7150 is the Velobity at the centre of the shell. At cﬁ: o, v = 0 and hence the tangential

-+ displacement is continuous. However equations (11) shows that ® has a discontinuity at ¢=a,
which implies that there is a hinge circle at the clamped edge. As stated previously, this
discontinuity is possible if m¢= — 1 at ¢ = «. . If the stress solution given by Equations
(9) should satisfy this condition, the collapse load must be S :

p =2+ (4k sin &) [log (sec & + tan o) — sin o) : (1)
The solution given by equations (9) and, (12) will be statically admissible- if the stress
profile remains on finite faces 4 and 5. This means that the stresses must satisfy
—-1<n0<1;_—.1<m¢<1 S e e L (13)
The discussion of the above inequaﬁtiég is facilitated by the following expansion
log (sec o« + tan oc)-—-sin’oc::%sz'n‘* ';o‘c—jv—V% sinb atn ‘ N
Tt follows from Equation (12) that p is always'grea,ter than 2. Equations (9) then show that
ngis. a monotonically increasing function of ¢, whereas mg is monotonically decreasing,
Hence the above solution will be statically admissible provided that ny (2)<0. This
condition leads to e : : . e
cos? « 1+ sina
st o cos &

— stn & ]—-—276}0 ‘ (14)

It is clear from Equations (11) that u, and y; are always positive and hence the velocity
solution is kinematically admissible. Inequality (14) is a restriction on the parameters of the
cap. For values of the parameters violating inequality (14), some other hypothesis must be
made for the stress profile. The solution given in this paper is restricted to values of o
and & which are consistent with the assumed stress profile. Fig. 4 shows the collapse pressure
given by Equations (12) as a function of o« for & = 0-02. '

IS

[} L 1. L

Fig, 4-0011apse pressure of a spherical cap (k—0-02)
M/81—3 . D o e s e
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CAP UNDER CONCENTRATED VERTEXLOAD

1t is not possible to make a direct formal analysis of a shell subjected to a concentrated
load since the resulting shear force at the point of load application is infinite. Hence we
consider a shell where the load is applied over a small but finite area and to get the “Solu-
tion for concentrated load” we pass to the limit as the loaded area tends to zero,

Fig. b shows a clamped spherical cap loaded over a portion of the surface. /The condi-
tions of equilibrium for the loaded portion of the shell are given by Equations, (7). For the
portxon of the shell on which there is no pressure acting, the corresponding equatlons are

(nysmg&)_—-n cos = s sing : "
(ssin gy + (sind) oy +mg) =0 \ )
ki(m ¢ sin ¢)' — my cos $] = s sin ¢ 2

>,

The relations ,béﬂween the velocities and the strain rates are given by Equations i‘%)
- and the boundary conditions are given by Equations (4) and (5). In addition the followingt
contmmty condition must be" satisfied.

g

At ¢ = B, Mg, N, S, v, w and w must be continuous (16)

As already stated when the load was applied over the entire surface of the cap the
stress profile was found to correspond to the hyperplanes ng= —1 and, mgy = 1. Hence for

values of 8 slightly less then e, it is reasonable to expect the same stress profile to be valid.
The substitution of the above equations of the hyperplanes into the Equations of equili-
brium (7). and (15) and the boundary and continuity conditions (4), (5) and (16) result in

0<p<spin = —1, My, = 1

ny =—4ip—(p—2) Sec*4] | L)

Fig E—Spherical cap loaded over a portion of the surface.



SANRARANABAYANAN : CaARRYING CAPAciTy oF SPHERICAL Car UNDER LOADING 213

—2 1 '
m¢=1_, (p2k)[ P log(sec(ﬁ—l-tancﬁ)-—-l]»
ﬂ<¢<a:n¢=——l,m¢=1
Cos? |
Ny = — 0; B [p ——_(p—2) sec2/3].sec2¢ » (18)
. 3in a 1 son o [pcos® B — (p — 2)] sec o -} tan «
n‘¢'_(1_2m>—7( o sz'nzﬁ)‘_ 2k sin ¢ 9 sec ¢ - tan ¢

- Using the condition that m¢ must be continuousat ¢.= B, the collapse pressure p is
found to be e V :
2§[log (sec & - tan &), — sin o] + 2k sin a}

' sec o -+ tan «
sec B -+ tan B ]

The solution given by Equations (17), (18) and (19) will be statically admissible provided
inequalities (13) are satisfied. As regards the range 0 < ¢ << B, it can be verified that the
four inequalities (13) are satisfied provided

4k sin B
log (sec B -+ tan B) — sin B

For the range B < ¢ < a, it is found that the inequalities on ny are satisfied provided
p satisfies the following two inequalities

2 sin? a p sin® B < 2 ' o (21)

However, the complexity of the expression (18) for m¢ precludes a general analytical
- discussion and hence m¢ was numerically evaluated and the corresponding inequalities
verified. The range of validity of the solution Equations (17), (18) and (19) isindicated as
region I in Fig. 6. Since for the above region of validity, the stress profile is everywhere on
regime 45, the velocity equations (11) remain valid for this case also.

(19)

=
[ log (sec o + tan o) — sin B — (cos? ) log

p< 2+ (20)
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Fig. 6—Range of validity of the sohition
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The solution for the concentrated loadl&obta.med,h&pa.ssmg,to the limit as the loaded
area tends to zero, Since the collapse pressureis given by Equations (19), the magnitude

of the

load at collapse is obtained by integrating Equations {19) over he loaded area. Hence

the collapse load F is given by - -

| F:‘fanzpsmMeﬁ_ T (@22

SﬂbStitlﬂ;iﬂgf the expression for p from E(juatio_ns‘ (19) into Equations (22) we get

F =

_4nRN,[log (sec & 4 an &) — (1 — 2k) sin_a](l — oos B) SR (23)
[ 109 oot ) —sinp— ot py1og Sl |

.. 8€ec

By passing to the limit as 8 tends to zero the concentrated. collapse load is found to be
Fc= QﬂRN9 {1 —(1 — 2k) (sin o){log (see o + tan 2)] —1 })' | o - (29)

of k.

[ ]
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Fig,~7——Concentréted collapse load of spherical cap (k———O-O2)

The velocity field given by Bquations (11) remains unchanged as 8 tends to-zero. Fig. 7 ~

shows the collapse load (Fe/2nEN,) versus the angle of the cap «, for a particular value
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