ON HYDROMAGNETIC POROUS-WALL COUETTE TYPE FLOW II

K. N. MenTA*
Dofence Science Laboratory, Delhi.

This paper reports the results of a study of hydrodynamic flow through a porous walled
annular channel under the assumption that the amount of fluid that enters the annular space
through the inner tube is equal to the amount that flows out of the oufer tube.

The results of an investigation on the effect of a uniform external transverse magnetic
field on the geometry of velocity profiles, separation and skin friction of steady-state ine
compressible viscous couette-type flow of an infinitely electrically condueting fluid between
two equally porous parallel planes have been reported in an earlier paper'. The investigation
has now been extended to the flow through a porous-walled annular channel under the
assumption that the amount of fluid that enters the annular space through the inner tube
is equal to the amount that flows out of the outer tube, In the absence of magnetic field,
couette-type flow of an incompressible viscous fluid through a porous-walled annulus has
already been studied by the author? and the results obtained were similar to those obtained
by Lilley? for couette-type flow between two equally porous parallel planes. The results
obtained in this paper, though qualitatively similar, differ quantitatively from those re-
ported earlier' due to change in channel geometry. N

) BASIC EQUATIONS

We consider steady state laminar flow of an incompressible viscous electrically conduc
ting fluid through a porous-walled . annulus in the presence of an external, uniform and
radially transverse magnetic field H . The outer tube r=a is taken moving with a uniform
velocity U in the axial (2) direction while the inner tube 7=>b is stationary. We use cylindri-
cal polar coordinates (7, 9, z) with the central axis of the annulus as z-axis, Assuming
that, .
‘ (i) electrical conductivity o of the fluid is large enough to ignore displacement

currents, :

(#7) there is no ¢ - component of velocity and magnetic field,
(#4) radial and axial components of velocity and magnetic field depend on r alone, ’

() no electric field is present, and that

—

)3 —H_.
: % ! ,
(h has dimensions of velocity; p is density of the fluid), the divergence relations of velocity
and magnetic field give,
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v, = Xy, (1)
n

hr = ~k° ' ’ : - (2)
')7 ] K

b . o s
A= - B annulus radii ratio,

N = % is nofi—dimensional radial distance parameter which takes the values A

and 1 at the inner and outer tubes respectively,

V, isthe velocﬂ:y with which the fluid is 1n]ected into the annular space through
the inner tube.

by =bh, at m =1-as stlpulated in the statement of the problem vide (2)

»Iﬂtroducmg non-d;lmensmnal ‘quantities by writing,

- n=t

2 . .
U | T etc.
2.

a

= ;,—JEU? p- being preésure.

and makmg use of the assumptions and (1) & (2 ); the equationé of hydromagnetics*
(in e.m.u) reduce to, .

where

ig 2 AP '
—— —_—  — 22 —2-=0 ‘ 3
) r | o ®

a2V av_ dV . Ry dH = o
T T TRt o T Cn=0 *)
o .
dH ~
eRH — Ry V = ) s S ~,;\ L (5)
b“ o X . . o .

R= >~ »  cross-flow Reynolds number (y being kinematic viscosity), - -
R ah, - Revnold 1 ) .
v Ryg = ——”H » magnetic Reynolds number v, = dmap. being magnetic

-viscosity; p is  magnetic pérmeability of the fluid),

€= » & non-dimensional parameter characteristic of fluid under consi-

—6

. . s 10
deration, For Mercury under ordinary conditions e = T
. . ) ° ’
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R, = av , Couette Reynolds number,
o .. Re v .1 : : . )
and ° C = — o o B2 term which refers to couette-flow problem with super-

imposed axial pressure gradient.

We take the inner tube to be electrically conducting and the outer one to be non-
conducting so that axial component of magnetic field H will be continuous across the outer
tube only. Hence the boundary conditions to be satisfied by ¥ and H: are -

V= O, N.= A ]
V=1, n7=1 % | @)
H=0, n=1 ] |

(3) to (5) along with the boundary conditions (6) comprise the basic équatioﬁs of the -
problem. . . o

SOLUTION OF THE PROBLEM

E]iniinating V between (4) and (5), the differential equation determining H comes out
to be ' : ‘ '

0 '
e + {3 B 1+e>}n2

eH [ 1 dH
pa -]—{I—R(l—l—e)—-}—eRz—iMz} 7)717’=0RM172 (M

k .
where M = e is Hartmann number. -
VVH .
On using the transformation 7= eC the above differential equation transforms to
d*H d*H dh 2 : : ‘
S B+ g (B = M) —CRye* )

: 1 .
" Tts solution in terms of original independent variable 7 1is,

H=RyU+k " +k 1 +k® - 9)
‘ provided a (vrB) #2 @ o
in which %, k; and k, are constants of integration and

1
0 B= w{R(1+ )+ VRI—GFFaE | ()
ko= g =
T 2(@—2) (B—2) ’
Substituting for H from (9) into (5) the expression for ¥ comes out to be
V =Bl + (B —albgn + (B—"B)eg 7 + k(B —2)7 (1)

provided «f or B) # 2
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, The constants of integration kl, ks and k are gwen on using the boundary
conditions (6), by

By = — (kg + by + B) S : R

' B
{1-—-10(1—)\2) (eR——2 3 {(eR B,B—eR} ——Ic{27\2+eRl-—P)} (€R— a) (1—N

J 1 B s 1
(eR—a) (1-—7\)1 (eR— (37\—61? f —~(€R B)(I——)\)\(eR a‘k —€R [  (12)

g , \ 1S ‘ ; { 1
W1 —k(1—22) (€R—2) f eR—al-«eR_j’ — k2N €R(I—22) [ (eR—a){l—)x )

b=

a f B \ B J a 1
(€R—a)(1—x ) \(eB—Pr—e€eRS — (eR—P) l—l) (R —a)\—€R f

In the absence of magnetic field (M =0, a, B=R, <R). the above solution reduces
to the one already obtained?

It should be noticed that the solution given by (9), (11) and (12) does not hold when
either o or B has the value 2. This special case is dealt with in the last section.

Havmg found H as given by (9) and (12) the pressure distribution in the flow region is
yielded, on integrating (3) by : _
20 oo '
@ (& )+H2+ V 7€ (13)

whence
\ ' 20 ’ ) ‘ e
5(0,n) —w(bn)=— & (14)
) e g o .
Thus the axial pressure-drop varies linearly with the main flow direction.

SEPARATION
The separation at the fixed tube 5 = A is cbtained when 7 ,
[’W]  =0 - ’ (15)

d
1”«;:)1

which, on using the expression (11) for V, is equivalent to

o a—2 B2 R
a(eR—a)kd + B (R —PBkyd + 2k(eR—2)=0 (16).
. Solving (16) for C' under the appf“ximatioﬁ e << < 1, we get,
—2
‘ (o —2) (,3——2)(a——ﬁ )\ ’ »
C= o’ R—2 ) (17) :

&
o« (=2 )~B’(A——)\ )+2(z\—>\)

where
' ﬁ——{RiVR2+4M2} |
In the absence of magnetic field (M=0, «'=R, p’ O) the expressmn (17) for ¢ reduces to
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e A
: "~ 2R(R—2)A AP
0 = B2 3 (18)
RI—2 —2(1—)
as in reference 2. ) S
' Panie 1 .
. . ) 23 .
VALUES OF - 3 —375;— FOR WHICH SEPARATION OCCURS IN ABSENCE (M=0) anp
 PRRSENGE (M=8) or meﬁsmo FIELD FOR DIFFFBFNT VALUES or R,
R, o»
| B € ratlo at =
( D) aé ) Separation b= - A
Injection Suction
R M=0 M=5 M=0 M=5
0 53-760 48-843 53-760 48-843
2 46-350 41969 61728 56247
4 39506 35672 70-145 64-135
6 33-278 29946 78-980 - 72-550
8 27-668 24-855 - -88-174 . 81:319
10 . 22-729 20-407 91-954

97-660

Fig. 1—Cross flow Reynolds number, R plot of Te
fixed tube 7=A) against R for Hartmann number M=0 snd 5,
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Fig. 1 gives the plot of (17) for M=0and 5. It shows that in presence of magnetic field,
smaller adverse axial pressure gradient would provoke separation at the fixed tube and that

it is lesser in case of injection than that of suction of fluid through the inner tube.

SKIN FRICTION

When the axial pressure gradient is zero (¢.e. C=0), the skin friction experienced by

the fixed tube is given by,

« 1[4V 1 a—1 p—1
YIE -=E: [—d"l— ] \ Re { o(eR— a)km)\ + B(eR— B)ksp } (19)
in which %k, and ks are values of %, and %k; when C =0
Under the approximation € << < 1, the expression (19) for —— PU2 becomes,
R—1 .
1 (—f) 5
pU2 R, ° A (20)
A —A
TaBLE 2 )
VALUES OF SKIN ERICTION IN ABSENCE (M==)) AND PRESENCE (M == 5) OF MAGNETIC FIELD FOR
DIFFERENT VALUES OF R.
R
e pt]z
Injection ‘ © " Suetion
R M=0 M=5 M=0 M=5
0 5-603 4-589 5-603 4-589
2 4.444 3-643 6-944 5-692
4 3-468 2-849 8:469 6-955
6 2-664 2-194 - 10-164 8-373
8 2-015 1.666 ' 12-015 9-936
10 1-503 1-249 }4'004 11-634
which, in absence of magnetic field, reduces to
R—1
T 1 RBx
—_— . = (21) -
U R, V

1—2a
as in reference 2,
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Fig 2, ‘Which gives plot of (20) for M=0, 5 shows that skin friction experienced by the
fixed tube is reduced due to presence of magnetic field. It further illustrates that skin
friction is lesser in case of injection than that of suction of fluid through the inner tube.

‘Special Case: Either aocrp = 2

‘We take « = 2. This implies a functional relationship betweén R and M given by, ,
M2=4—2R(1+ ¢) | <R? ] (22)
: ~ 4 — 2 R when |R| is not very large :
‘Since from (10), a 4 B= R (1 + ¢), we, therefore, have f = R (1 + ¢) — 2.
In this case, the solution of the differential equation (8) in terms of 4 is given by,

H=Ry (4+ L+ ln+ lfhn) : (23)
I, l, and l; being constants of integration and
L __C c

2(@—p) ~ 8—2R(L+e)

The expression for velocity is

a 8
V=eRly+ (R—a)lyn+ (B—Blan + b { (R —2)Ing—1} (24)

IS.}‘

3
TR TR B
' -
Fig. 2—Plot of R ;Uz against B for Hartmann

‘Number M = Q and 5,
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On using the boundary conditions (6), ll, l2 and l are glven by
= —(ly + &)

J ® 1 L
(I-{-l-——L)I(eR——B W—€eRf — L(eR—8) (1~1)

ho= 7 B 1 o _
(eR—a.) (l—k) ( ER—ﬂ\)\~€QI —(ER—B) I-—x )Y L(€R—a’ A-—eR)f . (25)

J 1
(1 +1—1L 1(6R———r~)7\——eRf — LieR —a) (1——7\),

R af R BT & 1
L (€R—a (1 —2 )7 (e R—B%—eﬁﬁ—(eR—»ﬁ)(l‘—x.) \(€?—a) —eR S |
" where L=1 22— (eB—2)Xn2x;

In the absence of magnetic field, this case corresponds to the case R = 2 of reference 2
and the expressmn (24) for V reduces to el
- C
V=(§ln)\—1)l_)‘2+ T2 .1)2—‘—2— 7 lnn (26)

which is the same as in reference 2

Under the approx:matlon €< < 1, the expression for skin fnctmn and the value of C
for which separation will occur at the fixed tube are given by i
r 1 (4—Rpr- , 9
0T TR AET—x o (27)

and

24-——R)? A\F—2
4(1+Ind) (AE2—23—(4—R)AE—24-X¥(1+-2Ind) | 2——(R 2)AF—4}
In the absence of magnetic field, this case corresponds to the special case B = 2 of

0= (28)

reference 2 and expressions for ?;ﬁ and C accordingly reduce to.
% : .

r 1 22 : o .
and
4
c T— X & 2lna . (60)

as in reference 2.

ACKNOWLEDGEMENT

I am grateful to the Director, Defence Science Laboratory for encouragemen* and
keen interest in the work.

REFERENCES

1. Mehta, K. N., Def. Sci. J. 183 (1963), 331.
2. Mehta, K. N, 4.1.4.4.J. 1 (1963), 217.
3. Lilley, G.M., J. Aero-Space Sci., 26 (1959), 685.
-4, Cowlmg,'l; G., “Magnetohydrodynamics’’ (Inter Science Pubhshers), N. York (190’7)



