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The transient temperature distribution in a finite hollow cylinder in contact with a well ’
stirred fluid at its outer surface has been obtained. At the inner cylindrical surface cylinder
- has been assumed to absorb flux which is sinusoidal along the length of ¢the cylinder and the
g plane ends of the cylinder have been assumed to be iiapervious to heat. Some numerjcal
results have been exhibited graphioally. R

Some cases of heat flow in solids in contact with well stirred fluid have. been disoussedin
earlier investigations by March & Weaver!, Schumann?, Lowan?, Jaegert, Carslaw & Jaeger>s
and Chao & Weiner’. ‘In the present paper we consider the transient state combined
radial and axial heat flow problem in & finite hollow cylinder in contact with a given- mass
of well stirred fluid at its outer surface and absorbing heat flux at the inner stirface which
is sinusoidal along the length of the cylinder. Such a boundary condition is s roested
in the case of a nuclear reactor designed for power production with a cylindrical oiifa rect-
angular type of reactor core. For such a core the neutron flux density distribution is sinu-
soidal along the length of the core (Glasstone®), and the heat liberation can be assumed to be
proportional to the neutron flux density. The plane ends of the cylinder and the core have
been assumed to be thermally insulated and the liquid at the outer surface to be-so well
stirred that its temperature is maintained equal to that of the surface of the cylinder which
id thus a function of time only. Initially the entire system is assumed to be' at zero tempera-
ture and the fluid is assumed to lose heat to the atmoshpere at a rate propt’irtional to its
temperature. The problem has been solved by the use of Laplace and finite cosipe -trans-
forms and a numerical example has been worked out. The results have been exhibited ’gi'e;-
phically. B o v G :

STATEMENT OF THE PROBLEM o ,

(- v“Cons'ider‘ ﬂle heéat-flow in a cylinder ¢ < r < b, 0 < z < lin contact with maés M
of a well stirred fluid at 7=b. If 6 (r, z, ) be the temperature function in the cylinder and
o(t) the temperature Qf the fluid, @ (r, 2, t) satisfies the equation :

920 1 26 8% 106 a<r<b

w P T T T T o<z<l 170 (1)

where % is the diffusivity of the material of the cylinder. S

h - 9=<p=0, 7 t =0 ] (2)

Boundary conditions : Coo e ek
' o8 . omE . : :

pro TR gr =Yt r=e o (3
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;%pere QQ ig the flux at.the centre. of the ﬁmt@ nuclear gource-in. contact with r=q and -

L= e ®
%% —0 i=0 (5)
;%%}w u;’ ’{az - (6)

- ‘gi('tv) sat1sﬁes the dlﬁ'erentlal equatloﬁ '. i
4Mcg? +u¢_~mnbxj7£3|d o m

whgre K-=kpo. is the conductivity of the, cylmder, ¢’ the specxﬁc heat of the fluid and H
,gthg raté of loss"of héat per dégree froni the fluid to the surfoundings,

SOLUTION
At Deﬁmng B ( r, % p) as the Laplace transform of 6 (r z,t) a8

L

....pt

0m@q e dt . 8)

.§m%m=

'Bhe’Laplace transform of equation (1) taking irito account the m1t1al eonchtlon (2)is given by

B S X2 il ; 10/ o
thh boundary conditions o G | .
. g : : ' : .
T %__ i —ygé & smwz/l L r=e _ - (0)
: io= e L r=b o
o7 e T
&7 = 0 z=o0 V (12)
a’é’ : ; ;
> = /A SRR z%l - (18)
and eéﬁta.tion‘ (:7) 'gives =
= Mcpm+39+2waf de=0 - “ Qw

¥
A s 3R ’=b
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If Biwrs p)is defined as the finite cosine transform of F'(r, z, ) With respect¥s s Wb Bave
A 1 . D :

ben (r, p) = f«iﬁ(r,z,_p); cog n;rz dz,wk n=101230.. (15

L]

‘ Applymg this transform to equatwn 9) takmg mto consideration (12) and (13) we get

a0, 1 4o, - %2‘”'2 ~
G T (e ) B
with conditions
dygn . . VI N | .
dr =0’ o o n=1;3’5y
,_ Qo l.“.;,,;,:"- 1 n+1, e
=Tk wwoy &P Thp n=0,2, 4, (. (17)
ahd RS
50,,,(1', ) =f-$ o0s n,; 2 ie '5_ Z- H n‘ ._-_;,_H ,. | R

L't vThe solution of differential equation (16) is
. Oen(r, D) %Af. I, (,\'Wf 7)" -+ B, ‘Ké n 1) - s o 19Re
he o ._:_; b+ nz'z/lé g o (20) ‘.

R

. and I, and Ko are the modified Bessel functztons of ordét zero.

Detemnnmg the constants 4, , B from the bounda,ry conditions (1N & (18), we obtain

21 :
Bl o @) = T ooy b0 D

Bzo(r, p) Got (o b o @) (21)
and
_ Qolf(—-l)-_l} (,,. w,.b)
R Y L T Ay B A
where
.

- Gan By = m (Z) Kn @+ (—~1) B (@) In (4) 23)
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and thepefore - - - .o Te T e T
_ e o
L] (’I', z, p) == ~—l—- Z (1) 003 ha )
-]
- R T . R
P Go,l(P'o r, Po B) — Q Go, oltto 7, po b)

Lo pr K
Go, I(I‘a ba Ho .a)

Go,olttn T, pn b) cOS m77 2]l

I L 4Q° ‘ | .
+ apK L, pa(WP— I)Go,l (Ba b, pina) ~ (34)
,, .
Substltutmg the value of 6 glven in (24) i in equatxon (14)
- - 41Q,. . : '
= (25
? P Bolp o :
where N ‘ S e T, SR
C Ap =M pF H Gy (6, g, ) F 27k e, G (b, 1, 0) (26)
and substituting (25) in (24) ST e

41Q, K 7w Gop (p, 7, 5 a).— 2 Q. Ap Gaop (s 7, 12,8)
PrNp Gor (i b, 1, )

GO 8 =

, 4Q, Goo (B, tab) cosnwzfl .
o +z KﬂP (1% —1) pa o1 (#nb P @) @)

We now apply the inversion theorem for the Laplace transform to obtam 0 (r, %, t) and
4 (t) from B (r, 7, p) and ¢ (). Accordingly . . ,

: . T thie pt o ’1‘,Y+i°° Pt
[ é(r"z’{t')‘l#'2w‘if§e dp , o) = _—f?(p)e dp (28)

2w
Loyt o8 — 10

The integrand on the right hand side of (25) is a single valued function of p with mmple
poles at p = o and at p = o, Where o; aré the roots of V

pp=0 L

Fmdmg the resxdues at these poles and s1mphfymg ‘we get » _
¢ ) = 49;:1.{ 40, Z 0%l (30)

a& “'QGA N
. ﬂm‘ oo

P
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and similarly

: ~ log /b.
0t = 4Q,1a ZQaOg'r/’(;

N ,; - K L -
4 Qo \ '}3,,1', Bn cos m 2!
T —T{?r w— D Gl,o (Ba a; Bnb>
. ) .as.t ;
(oss ": Ho,s
+ 4Q ! Z A %, Iva Go,l (o,s b5 pos @)
8 P=Ots L

g . .
2¢, z [GO. (p,j 7 #o.J“) "“-b Ho,j Gl WL (Ho,a b Ho,5 @) GO.o poi 7y tojb)]

t K o - Boyj D Ao,, P
‘ At .
Z Go o (I‘n;] s I"'n:J b) ¢ cos nwfl (31)
+ Kﬂ' (”’2—1 P'n.j D)\nJ v - ,n=2,4,6; o
where A,; are the-roots of the equation . . . B
, Dp =Go,1 '(Hm b, pa 0) = 0 - ’ VoL e T ‘ S (’32)
" wloo e S Rt
. D . : d ¥ 7;\.”. “ e . ’ ’ ’
_ [ ‘ 34
Ap=°‘s \ dpuép lp= s (34
. An' : '.nz‘ _g. ) R . T . e .
o= e T, Hamalk (35)
Mo g N ‘ ’
_ - B v < d " oo - ‘ '
, y Dy = l — i vt (36).
£ nj dp = Anj :

. ) VERIFICATION OF THE SOLUTION
The solution given in -equations (30) and (31) satlsfy the equation (7) by virtue of

’ equatlon (26). It is also seen that at r=>b, f=¢, thus sat1sfy1ng the boundary condmon (4)
.gince Golfe, 2) =0. L .

At r=a weget from (31) -
2 nwz ;
‘“K—*‘ - _+ Z n2—l . PTRAS

which is the Fourier cosine expansmn for qm.- —l— thus sahlsfymg the bound-ary condition (3).

- ‘To prove that the solution satisfies the initial condition (2) we go back to equations (25
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and (28). The contour of integration is a straight line parallel to the imaginary axis at a
distance y from it. Since o, the roots of equation (26) are all real and negative we can
choose y as large as we please. By replacing the Bessel functions by their asymptotic
expansions for large p and retaining the dominant terms we find that the integral on the
right hand side of (25) at t=0 is, apart from a constant factor, C

(%)
Q—\ —
a
where p = £ + 7 7. It can be shown to be less than _ |
e

(%)’/gexp {_\/ég_k“(b—:q‘)'f}" :

which shows that it can be made arbitrarily small by takihg large values of ¢ and therefore
the integral on the right hand side of (28) vanishes at /=0 thus satisfying the initial
condition (2). It can similarly be shown that 6 (r, 2, t) also satisfies the initial condition.

1/2

o i—n b —a)}
exp’ — @ — G
f P . ap

E—i

NUMERICAL EXAMPLE

For numerical work it is found to be convenient to expréss the solution (30) and (31)
in a slightly different form. For this we make the following substitutions

y,q‘a:iﬂs/ ; - »Hosb;iplns P1L= b/a’ ’
pini & =1 Lnj pnj b =1 py Lnj
where ,
. 2 ( A n? w2
equation (26) can be put in the form ‘
81,1 (py mes ) KnP—H' - SR
S il mem ) | (37
, H [ Mo
vheo ' = ongr ¥ = ol
and equation (32) can be put in the form
So(lis pu bnj) = © Sy : (38)
where o : - " L
Sn (wy) —Jn @ Y2 ) — Yn @ Tu ) - (39)

and the solution (30) and (31) as

. U, — (Rn¥a? )t
. 4 l b 2, 8 o
(p*(t) = —;-QPI{—a— — SQOZ z%—nz—s—*—”‘ B . (40)

-
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g,ngl .

é(r,z,t),: 4Q,1la +2Q°alogr/b

| + 40, Go,o (Bn 7, Bn b) cos m.m 2/l
R 4 (n2—1)Ba Gio(Brna,Bnbd)
n
S' : ) | )——(kn?sfaf)t
IS 3 01 e e ) ©
Q° 'Z\"’?zs Soq (Ms Py s )
am e ite 8 1 -
,\ AT

O {So (a1, L5 ) — 7l b Loj S (Log i Log) Sox (ke oy py) }
K J Dy (f) £t I
\ " ( 2 7 nln?

8Q —k\ TR )t S ( Lny /@, Lajpy ) cOS 1w 2fl
+ ——O—Z Z a® e 0.0

Kx )

' n J

D'yn (85 + ')’n? ) (41)
where . ' . n=24, 6,‘
— D'y (Lnj )= bISI (Caj) o Gus ) + @ go (Cni P1y &nt ) (42)
SN ST AR Y A e e
+ [ ( Haz‘—‘MC'kWQa ) So 50 (’73 Py Ms ) + Z"bklm So,1 ( s P1,’7.; )]
(43)
The values of various parameters chosen for the numerical example are given as
follows :— .
a=’1' . ., b=1'5 o l=10
k=0:12 p =785 C=0.118

and choosing H' and & each équal to unity we have for the example discussed here
© M=32-387w, H=3-886w. Equation (37) was solved graphically for-these values of para-
.~  meters by plotting both sides of the equation as function of 7, . The points of inter-
" section yield 7, . The first three values of #, for which equation (B7) is satisfied are
found to be 7 = 2659, N, = 9°322, 7, = 156-635
The values of {5 , {s, and {,,, the first three roots of the equation (38) were also
tained graphically and the values of A, calculated. These are tabulated in Table 1.

TasLe 1
n\ = 1 2 3
=0 1-3905 10-8848 ] L. 29-8627
2 1-4378 109322 S et 29.0694
4 1-5900 11-0743 , - 30-0516
6

1-8168 11-3112 : 30-2884
1
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Values of 6 ( 7, 2, t ) were-calculated for various values of rand ¢ at 2 = I/, and also <p(t)

o (r.0/2.t) & ¢ (¢)

Fie. 1—Temperature distribution in a finite hollow eylinder in contact with well
' ‘ “fluid.

Frg.  2—Total heat loss from the outer surface of the cylinder. -
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To find the total heatloss at r==b, we find the value of the expression — 21%679 f

0

B
20 /
or

10%

dz

The results are exhibited in figures (1) and (2). The. steady state temperatures in the
cylinder at various distances from the cylinder axis are exhibited in figure (3).

rla=100 . v ‘
7.00

6.00

0 (r, z, @}

5.00

4.00

3.50 ‘ :
g o m T Tt

Fic. 3—Steady state temperature in a finite hollow cylinder absorbing sinusoidal flux
at the inner surface and in c'onta(_:t with well stirred fluid at the outer surface.

i

Equation (37) has also been solved for various values of H' and %’ and the

three values of 7, are given in Table 2.

first

' TAB;E 2
k n, n, . n,

0-5 05 9:114 15-528 -21-820
0.5 140 ' 2.730 . 9-323 15-648
10 . 145 A 2.984 9-390 15-685
2-0 1-0 9-319 . 15-646 21-905
2-0 1-5 ' 2-038 . 9-388 15-688

15-706

- .20 2-0 . 3-088 ’ 9-421
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