SUPERIORITY OF HULBURT-HIRSCHFELDER FUNCTION TO SOME THREE-CONSTANT POTENTIAL ENERGY FUNCTIONS

M. R. KATTI and M. M. SHARMA

Defence Science Laboratory, Delhi

ABSTRACT

Considering the merits of the five-parameter Hulburt-Hirschfelder potential in reproducing the true potential energy curve for diatomic molecules, its predictive reliability of some molecular constants has been investigated by incorporating the modifications of H-H function suggested by Tawde and Katti. Results of a_e and ω_e x_e obtained here show that the performance of H-H function is consistent with the earlier findings of Steele $et\,al^1$.

INTRODUCTION

In a recent review published under the above title, Steele and associates have assessed the merits of some selected potential functions for their ability to reproduce the potential curve as determined by the RKR method and for their ability to predict α_e and ω_e x_e . They have shown in their analysis, that the five parameter Hulburt-Hirschfelder (H-H) function gives the best fit of the potential with an average error of about 1.5%, among the well behaved molecular states of some common diatomic molecules. On the other hand, they found that Varshni III and Lippincott three-constant functions give reliable predictions of α_e and ω_e x_e . The three-constant functions give the freedom to test their validity in two ways viz. for predicting the potential curve and the unused constants α_e and ω_e x_e , while the H-H function because of its five parameter nature provides only the former test. However, Tawde and Katti³ have suggested certain modifications in the relations for H-H constants which reduce it to a four parameter function and thus enable one to predict the fifth unused constant α_e or ω_e x_e . The purpose of the present communication is to report the calculated results of α_e and ω_e x_e from H-H function by incorporating the modifications due to Tawde and Katti³.

THEORY

The above modifications relate to the constants c and b involved in the term $cx^3e^{-2x}(1+bx)$ which acts as a correction term to Morse Function. α_e and ω_e , x_e occurring in the Dunham coefficients

$$a_1 = -1 - \frac{\alpha_e \ \omega_e}{6R^2}; \ a_2 = \frac{5}{4} a_1^2 - \frac{2w_e \ x_e}{3B_e}$$
 (1)

RESULTS AND DISCUSSION

TABLE 1

Comparison of observed values of a_e and ω_e x_e with calculated values for H-H function

Molecule	State Š _e	Observed w _e	Present we	Observed $\omega_e x_e$	Present $\omega_e \ x_e$
н,	$X^1 \Sigma_g^+$	3.0177	2.0512	120 · 817	147 · 0
N ₂	$X^1 \Sigma_g^+$	•0001208	0001218	•6127	•6768
	$X^1\Sigma$ +	-0171	·01496	14 · 188	17 · 961
٠, ٠	A3 Σ +	-01798	·018 13	13 851	14 - 177
	$a^1 \Pi_g$	-0183	0178	13.825	14.560
	$B^3 \Pi_q$	·01794	.01920	15.198	15.246
,O ₂	$X^8 \Sigma_g^-$	01579	01497	12 078	12.974
	Be Σ	0110	·01221	8.0023	8.744
co	A 5 Σ +	•0165	.0193	13.81	13 562
.71	$X^1\Sigma$.0175	.0198	13 · 295	12 · 183
	d^3 \triangle	·017į	01262	7 · 624	11 · 201
	$A^1 \Pi$	·02229	02367	17 · 2505	17.341
tegen og så det Generalis S	和	0.179	01519	9.578	11-700
	$a^1\stackrel{3}{\varSigma}^-+$	·01872	·01016	11 · 0130	12.332
NO	X2 П ;	·01781	01682	13.97	14 · 898
a.bou	$B^2 \Pi$	0116	·01165	7.603	7 · 866
AR	$X^2\Pi$	•708	· 6 26	82 · 665	96 · 718
	$A^2\Sigma$ +	-78 6 8	·8 805	118.85 ·	104 924
Hr	$X^1 \mathcal{E}$	·7888	•7348	88 · 726	85.115

Table 2 Average error (%) for the quantities \mathbf{s}_e and \mathbf{w}_e \mathbf{z}_e

Morse		Hulburt Hirsch-	Rosen Morse	Rydberg	Poschl Teller	Linnet	Frost Musulin	Varshni	Lippincot
	ا <u>ما د د ایم</u>	felder	e de la company de la comp	and the entire East	and the state of the state of	· · · · · · · · · · · · · · · · · · ·		in valle <u>Alexandra de deserv</u> e	
ω _e :	x _e 26·93	11 · 18	21 · 24	19.71	26.93	14 · 94	24 · 29	28 · 94	12 · 18
a _e	19 · 67	12 · 20	22.33	17.45	18-47	15.55	23 · 55	15 · 57	13.80

which ultimately determine c and b are replaced by

$$\alpha_e = \frac{6\sqrt{\omega_e} x_e B^3}{w_e} - \frac{6B^2}{\omega_e}$$
 (2)

$$\omega_{\epsilon} x_{e} = \frac{\omega^{2}}{4D_{\epsilon}} \tag{3}$$

The two substitutions (2) and (3) at a time make c independent of α_e and b independent of ω_e x_e allowing us to predict either α_e or ω_e x_e . The above substitutions are justified by the fact that both are derived from Morse function which forms an integral part of H-H function.

The H-H function on differentiation gives

$$x = U^{iii} \ (\ r_e\)/U^{ii} \ (\ r_e\) = 3a(c-1)$$

$$y = U^{iv} \ (\ r_e\)/U^{ii} \ (\ r_e\) = a^2[7+12c(b-1)]$$

Results of α_e and ω_e x_e following Varshni's technique evaluated from H-H function used as above are shown in Table I. The various molecular constants employed here are uniform with those quoted by Steele *et al*¹. Table 2 shows the percentage errors in these estimations of α_e and ω_e x_e side by side with those obtained by Steele *et al* for other three-constant functions.

It may be seen from Table 2 that the average errors (%) given by H-H function for predicting α_e or ω_e x_e are lower than that due to Lippincott and Varshni III. It may be concluded that the H-H function when reduced to a four parameter function by introducing suitable modifications predicts the fifth one with minimum percent errors compared to other eight functions. The present performance of H-H function is consistent with the earlier findings of Steele et al^1 .

Acknowledgements—Thanks are due to Dr. M. P. Murgai for his kind interest and encouragement in this work. Thanks are also due to the Director, Defence Science Laboratory for permission to publish this paper.

REFERENCES

- 1. STEELE, D., LIPPINCOTT, E. R. and VANDERSLICE, J. T., Rev. Modern Phys., 34, 239 (1962).
- 2. HULBURT, H. M. and HIRSCHFELDER, J.O., J. Chem. Phys., 9, 61 (1941).
- 3. TAWDE, N.R. and KATTI, M.R., Ind. J. Phys., 33, 89 (1959).
- 4. VARSHNI, Y. P., Rev. Modern Phys., 29, 664 (1957).