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ABSTRACT

In this paper, a queuing model has been considered in which the serviee facility is attending
to units from a finite population as well as to the units from another independent infinite
population. The units from the finite population has “Preemptive resume priority” dis-
eipline over the units from the infinite population. The queue length distribution and the
stochastic law of busy periods have been obtained by employing some finite discrete trans-
forms. Various interesting particular cases of this model have also been discussed.

INTRODUCTION]

The usual assumption in the studies!:23:45 dealing with the priority assignment in
waiting line problems, is that the units of various priority classes emanate from inde-
pendent infinite populations. But there are many practical situations in military and in-
dustrial fields (e.g. chemical or textile industry, maintenance centres etc.) in which the
units of different categories come only from finite populations. A situation of this type
has been considered in this paper and some characteristic measures of model have been
evaluated. : ' o :

There are two classes of units which arrive at.the service facility for getting service.
The units of one type come from a finite population consisting of N members,’ while
the units of the &ther type come from an infinite population. The inter-arrival times
and the service times of the two types of units are goyerned by some probabilistic law.
There are several types of priority disciplines which we can impose. In this paper we
consider only the preemptive resume priority discipline. Under this discipline, the units
from the finite population displace the units from the infinite population if they are under
service, and the displaged unit resumes the service at li}he point where it was preempted.

It may be remarkel| that this model has been considered by Avi-Itzhak and Naor®
under the assumption d\ Poisson arrivals and exponential service times. The first two
moments of the non-pMwity queue length were obtained by elementary probability
considerations. -

The problem ,consi&“gd here can be interpreted in many ways. Two different
interpretations, we give bénw for this model. The arrivals and the service of the priority
class units can be considered a¥=n interruption process from the view point of lowtpriority
units. This has been studied by Gaver,7 Keilson® and the author® in the particular
case of a single interruption. In reference (7) and (8) the model has been treated through
completion times where as in reference (9), the same process has been studied by restrict-

<—ng the priority class queue size to unity. The model considered in this paper generali-

ses the problem in reference (9), in the sense that interruption occurs from a finite
number of sources and therefore a finite number of interruptions can occur.

The problemcan alsg™e. interpreted in another way. Let us consider a server who
is attending to aﬁm't@ of units say N machines. He also attends to some other
jobs emanating fom an a r infinite population when he is free from attending to the
machines. This model can be utilised to allot the number of machines to the server either
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by properly bﬂam}mg between the opera.tmnal eﬂic1ency and the machine availability
defined--hy Fabmon and Com® or by striking a balame between the mean number” of
machines and the units waiting. For this model we can intutively see that the machine
availability will be the same as in the case of the simple machine interference problem
where the server attends'only to: machines while the- operational eﬂ‘i(nency 1s different
and depends upon the traffic: mtenmty of low priority units.

In this paper, the queue length distribution and the stochastic law of busy periods
for the model mentioned, have been obtained by incorporating all the necessary supple-
mentary variables to make the process, a Markovian one.

THE ASSUMPTIONS. IN THE MODEL

Let us suppose that a service facility is attending to units from a finite population
consisting of N units, (we designate them ‘as priority units) as well as units from an in-
finite population (we designate them as ordinary units). Each of the priority units
arrives at the facility at random, with mean rate A, if the server is occupied, and with

mean rate /\.'1 if server is free. This typé‘()f formulation facilitates to discuss two

particular cases of the model viz A, = )\1 and /\1 = 0. In the former case, the priority units
can arrive at the facility even when there is no’ ordinary unit’ in the systern whereas
in the later case, they can arrive only when there are ordinary units in the system.

The service times of the priority units are identically and independently distributed
random variables with a common probability distribution having the density S)(x). After
getting service, the priority units return to the original population. Let us also assume
that the ordinary units arrive at the facility in a Poisson stream with mean rate A, and
their. service times are identically and independently distributed randgm variables’ thh
an arbitrary probability density Sy(x). Let us impose the preemptive resume priority’
discipline. According to this: discipline, the priority units, on their arrivals replace the
ordinary units if it is under service at the service fa.clhty, and the displaced ordinary
unit on its reentry, which is possible only after the service of’ all the priority umts

waiting, had finished, resumes the service where it was preempted.

FORMULATION or 'THE MODEL‘;{’ ’

Let us define the following probabilities :— /)

) P (@, g, t) dody [l >m < N; n>1], the p'robab'té:y that at time ¢, there
are m priority units and # ordinary units in the system, the pri 1ty unit under service
has the elapsed service time lying between z and z + dr and fhe ordinary unit was
preempted earlier when its elapsed serv1ce time lay between a.nd y -+ dy.

@) Qm,,, (#,tyds [l “m ~ N;n > o] — the probability at time ¢ that the system
being in the same state as in (1) except tha.t none of the ordinary units was preempted
earlier.

(3) Ux (y, t) dy [n > 1] — the probability that at time ¢, there are # ordinary units
in the system and the unit under service has the elapsed service time lying between
y and y + dy.

(4) P, (t) — the probability that at time ¢, the system _ 1s empty d.e. neither
priority nor ordinary unit is in the system.

The above states are mutnally exclusive and exhaustlve\ﬂu/%)rowde the Markovian
characterisation of the problem under consideration. Now it is easy to construct the
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. (hﬁezenhal dlﬁerence equatwns for tlmpmoess hy:-ﬁhnectmg thw o
at-time ¢ and ¢ + A and lettmg A => 0w Thm we have, |~ vt 0
e "
R E HN—mm+ x,+ m(w)'}”}fm 90 )

T (N m + 1) A Pm.ql‘n ($,~ %tl ‘4’ Aa Pm’n.—],-(x; y, t) § (1)

{i'+ I —mA bt (@) ] }QM (o, 8-

ot 8w
= (N—‘m 4 ])A Qm-——l,n (ws 1) + A2Qm,n—-l (-'ﬂ t) (2)
{ ‘a?r + 7‘; F I, (y)J}U (y,t) o 1 o
Y U,,_l(y,t)+fP1,(w y,t)m(w)dx e
Ga rWeabee
L w o @ S
= f’Q (@,t) ny (2) do +fiﬂl BOmd -0ty

where v, (z)A and () A are the first order" probabxhtles that the prierity - and -
ordinary units respectively complete the service between-z and z 4 A- sub}ect 1;0 ‘
the condition that the units have not completed their service upto time . _

. The relation govennng S; (x) and »; (2) is gwen by

S () = (o) gup { — fn (w)dw} CYimnn
t&e solved sub]ect to the followmg boundary condl»tlons* |
co foralln - ) “{6)

The above equations are
Py, x(0, 9, t)

Prn (0, 1) — wila@ y ) m@ds  [L<m<N] ()

4 +

o PaGyd= [ Paeom@dt NATG @)

5

QN;» {o, t) =o : i : : - (9) ‘
. "HA':"*Qh,Iu (0, t) =gm+l,n($, t) m (a:)d:v . [l*ggaiml<N] e P (10)

°
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@1, o(o, f Q2,0 (z,t) my (%) da:+NA i? ) (11)
Vnlo,t) = f Uuit 0 m @) g+ [ Qun @0) 1,0) ds 12).
and | [+ N o .

Uy (o, 8) = f v @07 @) dy + fon (@, tyn, (@) do + X Py (&) (13)

The equatlons (6) and (9) arise because the prlorlty units come from the finite populatlon
and it is not possible to have N priority units in the system just after the service comple-
tion of a prlonty unit.

SOLUTION OF THE MODEL

We will now derive the solution of the above equations under steady state by employ-
ing the generatmg functions and the finite transforms. We shall not attempt here to
give the rigorous proof that the stationary distribution exists whatever may be the
initig] condition. We shall later on show that the criterion for the non-saturation is

given by
N—1
~ N—1y\ 1
w(imnS (7))
‘ ! ¢
o =0 - !

where p; = A f z8; (z)dx (z_-l 2) and q$ is defined in the equation (54). We will

drop the argument t in the state probablhtles mentloned above to denote the probabili-
ties under steady state. Thus for example, the steady state probability of P (2,4:)
dx dy will be denoted a8 Py,u (¥, y) dv dy. Further, let us introduce the following
generating functions of steady state probabﬂltles

o ) 7 .
fm @y )= me. (T, §) & 5 g (2, @) =‘z‘@m, (@) o
n=1 ) n=b -

and J(y, &) = ZU,, (y) a®
n=1

.

Thus the equations (1) to (3) after ‘employing the generating functions, can be written
as

{— N —m) A A (I —a) +m(wh*f’f (25,0
= (N—-m+ 1A fna (@y o) (14)
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{ 'gz_ + [(V —m) A, + A, (1—a) +9, (a;)]} o (2, ) | ,
=(N—m + DA gma (@0) - L7 (15)

{ % =+ [NA -F A (1 — é) + 7 (?/)] }J (y‘,oc)—v—— [ fL (w,y,a)ql(a;) .flz (16)

Let the following finite discrete transform be employed

N—1 '
dntog = > (n)f, @ue logm< (N b1
j=m - ‘
and ]
: ‘ N—1 , . o
By (z, a) = Z(m)glv“j @a [og<mg(N—1I) (18) -
J=m .
The inverse transforms of (17) and (18) are seen to be -
1—1 PR .
K (N—I+K\ - .
fesa=> @ ("EF ) v sepan<iam @
K=o
and
| < K I+ KN\ S e o
gi@ @) = Z =) ( * ) By,g@a) . [L<IKN] . (20)
ya . ,

Now changmg m to (N—r)in (14) and ( 15), multiplying both sides by "Cr andisum-
ming from 7 = m, to r = (N—1) we obtain

{% FImA 4 A (=) + 9 @)] }A (@ ha=0 @)
" and ; DT S
{ 2 +[(1+A 1~M)+m(fv)]}3 @ma=o (22)

On mtegratmg the equatmns‘m) and (22) from o to z, we get ‘ I

x

An (2, y, ) = Am (o, y, oc) exp’ {—[m)\'l-Jf- A(l—a)jz— | nl(x)da}} (23)

>

and : k ' ’ B

B (& 2) = Ba(oerp { —Emd+ 2,0 — @) o — 1.0 &) ey
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Similarly the boundary conditions (6) to (11) on empleying the generé,fﬂing fanctions
give the following equations :

f“ (0, y’ a) = 0 ’ ’ '( - ) o . PR ,.“: (25)
Fu(0, 3 8) = f fon@ypa)m@de  [1<m<N] (26)
£y a) = f fo @ 9, 0) 7 (0) do+ WA, T (%, ey
gy0,@) =0 | (28)
(0, @) = f i @A @de  [L<m<] (29)
and o (o, «) = J- 92 (@, o) 7, (2) dov 4+ N ):1 P, (30)

. We obtain, employing the transform in (17) to the equations (25)—(27)

o —

- Am(?’ys“) = { f [Am-—l(w’ y,“)+Am(m’ y’“);‘ﬂl(“’)dx

+(.7 )NAIJQ'/, ( )f 4 _ (m,y,a)nl(w)dw} - (31)
Substituting (23) in (31), we get |

An o) = { (71 — B[+ 2 (1—a) ]) } :

- . ¥y —
. {A,m—l (,O,y,a)sl[(m-—l)?ﬁ-i—hz (1—"“]—'(‘ )AN 1 (O,y, )S [(N—l)/\l

‘ +/\2(1—a)]+ N/\IJ(y,a)( l)} | | (32)
whereS (s)::f s. ‘(x) o [Re¢s)>,-ot...)=1 2]

o
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Let us now: defime . . G gt e WL g
n_
. S I —1) A + Ay (1 — &) +08]
o o= [T(% )
(% 9) INAW R AR NI (33)
‘ {1 <OV — 10]
and
T B At A (l—a) o]
0= | | (T8t s i —n+7) (34)
l=o0 :
‘ [0S mg (N—1)]
The relations between C,,; (e, s) and Cp, (&, 5) are given by
C,,: (e, 8) o Con—i (2, 9)
1—8 (@ —a)+s]  1—8 [mr+2,(1—a)+5]
N .1 .
R [mal + Ag (1 — o)+ ] (35)
Dividing both sidéé of (32) by C’,,: (oc,{o) and using the rehtions in (35) we get
Ay 0,90 _ [ Am—r(09®) . NMJ(y o) ( N-1 ) 1
0 o) L a9 18 @a] \ M ] Cu—i(wo)

AN_l(o,y, Sy [N —1)A, + X (1—a)] :
S P — ( )m_l(oc,o)} (36)

Changing m to (m—l), (m——2) .......... N | successwely and adding we get

AR L - n " _
Anlo,y 0 _ { 4, (0,0 | NI () Z (N——l) 1
C, (2 0) ‘ 0, (x 0) I—Sl[hg(l—a) — Ci—1(x, o)

L

Ay —1 (0,3, ) S LN —1) oty (o) |
T 8B — ) E( )C'z o) G0
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Now,_m;idi@ all the equations-(25), (26) and'(27) one can easily see ‘.

Ao (o, ;/» @) f 4, (7, y, “)"h(w)dx""f Aze....l (‘” Y, oc)"71("7) dz

_ -+Amlr@”q (38)
Substituting (23) in (38), we get
Ao (O, Y, (X.) = ]M{N 1J(?/»°°) AN 1 (O: Y, 0(') Sl[(N_ 1)A
‘ +a1—an } (3)

DeﬁningGg' (o, 8) = Oy (, s) = 1 and substituting (39) in (37) we get after a little
manipulation - » -

Ao,y { ey
Gn: (2, 0) = 1-— 1[’\2(1—'0( Nnd (?/, “ Z ( ) O (w,0) (o, 0)

=0

_ A;H (0,9 %) sl'_[m—l)aﬂau—«ni (1) 6;1(76} |

‘ Puttmg m= (N —1)in (40) and rearranging the terms we obtain -
T ' NX, J (y, @)

Cwo @)

A4 ) :
N 1(0yoc) S =D At A (]
~where . - ) e .
o N—1 ,
- N —1 1
z ( 1 ) Cl—.-l (x,8)
2 00) ey
' = . ! ., ("f’ )
Thus we get -
Nxd (y, &) Cp (o, 0)

A-m » s Com= A =
_ © 98 = T Ty £ il — o]

N

| {Z (N-—l) T (“ 5 — @ (2,0) ,_Zo( )z':—llT;)—JL (43)
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Similar procedure can -be adopted with the bmmdary conditions (28), (29) and (30)
and we obtam

B (0, a) = [[NA: P, Cny (‘?" o)/ 1‘_‘Sl [ma, + )‘2(1._“);;]

‘ m , 1 |
. { Z( Nl—t) (a, 0) — Ga, O)Z( ) o) | (44)

I=o0 l=o J

Now, the equation (16) can be written as

. ]
{if+WM+MU—@+%@%JWQ=J%4m%mMW (45)

Substituting the vnlue of 4 (2, y a) from (23) integrating and using (41)'the equation
‘ (45) can be written as S . i

{"‘W + [V {1 =G (q, 0); + 2 (L —a)+ 7 (1\9)]}'7 %)= 0 ('16)

The solution of (46) is given by

; ¥ : ‘ )
J (9, a) = J (0, a) exp {— [N\ 11— G (2,0)} + A (1 — a)] y — f 72 (%) dy} )

The equations (12) and (13) when multiplied by apf;ropriate bowers of o and added give
after employing the relation (4), \ ‘ :

J (0, o) = {Hm,%@)dﬁ f B, (5 0)n (o) ds

o
—W&HmeE} ) - 4s)
With the help of (24), (44) and (47), the equation (48) simplifies to

Toge— —IENENO—aP,
‘ 1,*‘"%‘ Sz'[N%(l*G(m0)+A,(I'~¢)].

(49)
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The generatmg function of the state probabilities is defined by /

. H(a,ﬁ) {Po +>J‘J(y,m)dyfz fgm(x a)d.'r.'
4;2;3’" fw ffm(wsy, dsdy |

After a 11ttle bit of s:mphﬁcatmn (60) can be written as
(a 1)S, [N §1— 6(,0)} + Al — a)]
e p)=P.{ 5, V0 {1 = e, 0 M=)

(50)

m—1

szz( ( _m+K)T —m+K(a) N
| (O — Aat-Sof Hay§1— G(a,o)}} }

m=1K=0
—&. [N)ﬁ{l — G0} ¥ }\2 T —a)] L1 a1 — a)lie — A%
(51)
whepe -

Cr_1(a, 0) {Z —1 1 G(a,O)Z }(52 )

T, (&)= W1 =)

The P is determmed such that = (1 1) =1 Thus we have

£ o) Ly 1
[——/\2172(1 + NMLZJ(NT‘I) 4}, )

(63)

where L
if 1=0
- (54)

l T rw ] ’
¢ = __‘Sﬂ__) 1<l <N [
_ b Klil(' 1 — 8 [K\] i DA

N i Lt b
and }"h = a;S (af)dw ‘(@'—_— 1,2).

°

. Thé friean queus length of pt‘lon’oy' md nompnonﬁy can-be: obtamed from (51) by the
process~of differentiation. - e g . , -
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PARTICULAR: CASES

We shall discuss some of the special cases of the model discussed above,

(@) Ay = A* ¢ In this case we assume that the priority units arrive even when
the server is free. The génerating function (51) and the vaIue of P, reduce respecti-
vely to

(@ — I)Sz[NAI(i — G<a,0» + 31 —a)]
mH(ep) = [ e = IV — @) + Al —a)]

LSS ] -
m<1 K=0
and ]
R I T 0
o { 2 ]i=o Lole )] ‘ 11;:@ ; f

() A* =0 : In this case the priority units arrive only when there are opdn 1"A 2.

customers in the system Thus for this case (51) and (53) reduce to -

jFr. 3
0 f) = { . oc[l—S[NAI(J—G(a.,o))—I—z\,(l——-a *( ~§~=§
s Wa—Sthhlff—G(a,o)>fAz(lfg é-’(( \,g\
N—m-=& .‘_g %qu
(1%2 Z<-—( ) 7y B 0 13
=1 "“N—m+V \ ;“5&‘
| | iis
and B ' ‘ '6.:-\\,\,“.74
— N1 o *®
. N—-1 1 \—/
Po= | 1=nm(1eaan > ()% D mie
- l=0 LRRF

respectively.

. (c) when N = 1, the model reduces to the breakdown model cons1dered by the
author.?  The expression (51) reduces to °

0 B) e L2 (L + Xy m) 1 —8 (1 —a)
D 1+ X {(1'“1 Nl—a )
1 M

a(1—8, [0 (1 — 8y 1A (1 — )] + 21— a)})( 13t Sif A — a,)f}} 58)
a— 8 [\ (1—8; [ (1—a)]) + 2 (1—a)] Ay (1—
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(d) If we take the limit of v (a, B) a8 a tends to 1, after putting A, = )\; , we obtain
the results of: the-simple machine intereference problem It is easy to observe that

- P
Lim T, @ = f = 2 l;ﬂ ("7) + G
Hence | -
s . ’ N m—1
m(, B = e (+m> € (N""“LK)BN_M) |
1+Naym NZI(N”I)qbl ST Rt o

=0

— a result which is obtained by Takacs. . It is evident from (60) that the priority
queue is not affected by the preemptive priority discipline. Thus the machine availability
will be the same for the model considered in this paper.

() When N==0or A = /\1 = 0 the results (51) and (53) correspond to the classwal
single server queumg process.

Stoocmastic Law oF THE Busy PERIODS

Here we shall investigate the distribution of the length of busy periods for the model
considered. A busy period is the length of the time during which the server is occupled
For the process considered, the busy period either begins with an arrival of a priority
unit or begins with the arrival of an ordinary customer. Thus we separately investigate
the time period during which the server is busy in servicing the units when

(@) the time period begins with an arrival of priority unit and
" (b) the time period begins with an arrival of ordinary unit.

In ordef to determine the busy period distribution for the case () we proceed as
follows: The busy period begins with an arrival of a priority unit. Then we consider the
tour of the particle in the state phase space and the process stops as soon as the particle
reaches empty state at time ¢, If y,(¢) denotes the busy period density and P’ (¢) denotes
the probabl.hty that the system is empty at time ¢, then

d :
y= — P'(t ‘ :
n)= 2~ P (6)

For this process, the equations (1), (2) and (3) are valid and further we have the following

equations:

P,0 = [Uiwom @y + [0, on@e @

o
PN,n (o, t)= O for all noo (63)
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Pm,n (0, ¥, >t) = f Pm+1,u(x’ Y, t) T (x) dn -+ Sl,m‘ Un(yo £y e (64) L
Oxa 0f) = O foralln \ s
Onn (0F) = f Qm-%-l,n (@, t) my (@) do - S o (66) h
Vet = [ Ui Wiy+ [ Gnenn@a @
and Qi (o) = 38(+0) ‘ L . (68)

where (z) is the Dirac delta function and §;; is the usual Kronecker delta symbol

Taking the Laplace transform of the equatlons (1), (2) and (3) with the boumiary
condition (68), we get

{a + [@=mrtatotn® || s

= (N —‘7” + 12 Pm—l,n (w, Y 8) + A; Em,n—l (x’ ?/" 8). | (69) ’
{5‘1 [(N——m)hl—l— M5 + 7y (@) ]}@mm GA—3@ .

=N+ D) Guin@ ) LK Quani @) . (70)

[
{L% I:NAL+A2+S+7]2 y) ]1U .%3)

=2 Tt (9 5) + f_P.,n,(x,y,‘s>n1\(wT)dx‘ . ay

where
®
— st

P (@, 4, 8) = f e Pua (z,9,t) dt ete.

o
which are gonvergent whenever Re (s) >

The equation (69), (70) and (71) and the boundary conditions are of the sitiiilar type |
as before and accordingly the problem can be solved by adoptmg the similar procedure.
Thus- we hare

_ - [G(«,8) —s P (s)]ac -
a— S [N M (1 — G (29) + X (1 —a) +3].
Let. a; be the root of the equation in «, - »

F= G NN (=G s)) +HA—a)+s (13)

J (0> o, S) == (72)



14" “ K. PEIBUVENGADAM

which Hes side joe|=1. Thus frem (61) and {(72) we get the Laplace transform of the busy
peno& dmmbutim stmhhg with a periority unit and 8 gwen by

e P )= ()= Gl 8) ()

.Now we shall investigate the length of busy periods which will begin with the arrival
of an ordinary unit. Since Qn,, (2,t) will net exist for this problem, we only take the equa-
tion (1) and (3) and also impose the condition that the system stops as soon as empty state
is rewched. Tf P (¢) denote the probability that the system is empty at time ¢, then the.
density of the busy period distribution is given by .

- d

RACE 0 - ) x (75)
The additional equation for the process is | |
d, 3 . |
E ° (t) = Ul (?l, t) T2 (y) dy (76)

together with the boundary conditions (6) (7) (8) and
(0,8) = f Un-H Y, t) m (?/) A (M)

The initial condltlon is :
U(y,o)_8y+8) T S . e - (78)
where 8(y-+) is the Dirac delta function.

As before by employmg Laplace transform, we obtam

“ ~

{8 (N—M)A +A2+H~m(w)] } Py (@, y,9)
=(N—m+DX +Pm_m(w ¥ 8) + 2 P n (2, 9, 9) (79)

{_+ [73, +)\g+3+"lz(?l)] IS

T AT+ f Posm@d @

The equxtmns can be solved as before and finally we get
S N A ( — —_ '
(0,a,8) = [ - Ga,3s))+A(1—a)+s]—sP, (s) @)

1— — SINN(1—6Gfa9)) +AX0—a) +s]

Since J (o, «, 8) i8 analytlc for Re(s)>o and |x| <1 the numerator of (8]) should vanish .
for ot = a, where s m«the oot of the equatmn (73) inside ]ocl = 1 Thus we obtain:

s P, (s) =7y (8) = s = (82)
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Now since the arrival rate of each of the prierity units, and ef the ordinary units:are Poisson.
we observe that with probability-[NA*/NA%+A,] the busy period starts with spriority, .
unit and with probability [A,/NA;* -+ A,] the busy penod gtarts with an ordinary unit.
Thus, the Laplace transform, of the busy penod distribution (¢) is given‘by

_ ) NA* A - T S - ; PR
y(s) = N)\*—!i)\ G (o s)+N)\*—Lz\ e e e (83) _

when N = 0, this result corresponds to. the. classmal quemng procesq and When N =1 :
the result agrees with the result of Gaver® and Keilson®. < . ., . B S

The inversion of (83) is, however, difficult even for the simplest cases. But the moments
of the length of the busy period can be obtained directly by succegsive dlﬁ'ermtlatxon of
(83). Thus, the expected length of the busy period is given by

fty(t)dt:
Q = (N—1y 1 . O V=1t
NAl*"hZ( I )—(;l“f"\z\"l'zv(l—*‘Nh’h;( l)?) o
N—1 ~ R

(e o (mne S 07)3) 1

L o

and similarly other moments can be calculated.

= ey EATERE B

DISCUSSION

We have already stated the condition under swhich the steady state solutmn for the
model exists, The condition is obtained by a.gsummg the steady state probability P_ which
is given in (53) should be non-negative. -

It may be interesting to note that the arrival rate of priority units when the system is
empty, has no influence for the existence of steady state solution even though it is different
from the arrival rate of the priority units when it is occupied. Thus, the criterion for the
existence of steady state solution will be the same whether priority units amve or do not
arrive when the system is empty. '

It may be remarked that the Laplace transform of the time dependent probablhty
generating function can be obtained by using a similar method, However, the inversion is
difficult and therefore the derivation is omitted.

Further it may be observed that we can introduce the other type of priority discip-
lines for this model. For example one can introduce the head-of-the-line priority discipline!
in which the priority unit if it atrives during the service period of an ordinary unit should
wait till the ordinary unit in the facﬂmy eompletes a service. Such- changes in queue dis-
cipline affects the results considerably.
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