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ABSTRACT

In this note, the Laplace transform of the distribution of the length of the busy period for the
simple machine intérference problem has been obtained. It is shown that the miean length of the
busy period—ﬁnﬂér\smmﬁfglimiting conditions corresponds to the mean length of the busy
period for the infinite case. -

INTRODUCTION

A busy period of a queuing process begins wheu a customer arrives to find: the server
free and starts getting service and ends when the system is again empty. The busy period is
followed by an idle period and these two periods alternate. Obviously the distribution of
the busy period is important from the point of view of server. T

In this note, the distribution of the length of the busy period for the simpfe machine
interference problem has been investigated. A repair man is to look after a set of N'machines
which fail from time to time. As soon as the machine fails the repair man starts repairing it
and thus remains busy. In the mean time if more machines fail, they wait in a queue. The

-repairman becomes free once again only when all the machines are running. The distribu-
tion of the time intervals during which repairtan is busy in repair activities is called the
busy period distribution for the simple machine interference problem. \

FORMULATION OF THE PROBLEM
Let us suppose that N machines are serviced by a single repair man. The machines are

identical and work continuously. The running times of each machine are identically distri-
buted positive random variables with the common distribution function.

f '1A—5M - ifmv>o‘ : ‘ ‘ “
F(w)-: -{ .o e .. .. (1)
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It is supposed that the repairman is idle if and only if there is no machine in the waiting
line. In what follows the order of service is irrelevant. The times required for servicing the
machines are independent positive random variables with a comron probability density
function S(z). We define 7(z) A as the conditional probability that a machine will be
repaired between » and # 4 A subjéct to the condition that it was not repaired upto
time z. It is easy to see that :

S(x)=n(x)exp{—fzn(y£?}. (=0 .. e . (2)
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Let the Laplace transform of S (z) be S(s) so that

U T T R R
TS = [ s

o

which is convergent whenever Re(s) > o ¢

Let us assume that a unit arrivesat timet = 0 W}mﬂl initiates the busy period and the -
system stops as soon as the empty state is reached at time ¢. If P, (t) denotes the probability
that the system is empty at time ¢, then it'is easy tosee that P, (?) corresponds to the pro-
bability that the busy period is at most time ¢, Consequently the dens1t fu of the busy
penod dlstnbutlon is glven by ; L e

d e _‘;_ PRSI o ("W‘ .
r(t)_ Po (t) .. .. .. S (8)

Let us define P, (z,t) dz as the probablhty t]iait. a.f"tlme A there are n machines in the
service facility and the machme under serv1ce has the elapsed servme tmm Wluch ll{e“r“ et:
Weenxand w-j—dw ‘ ‘»"/:‘ e )

oo Y

Slmple contmulty argument leads to the equa.tlons S

[i % + {(N—n))x—i—'q(x)} P,, (x,t)—(N——n—l— l)AP,.__L (w t);f
s "'73 t)—fP1 (w, t) n(w) dac ‘ ’(5,‘)”1”“:

which are to be solved sub]ect to the followmg boundary condltlons

Pn (o ?) = an +1 (w t)v)(m) dx (1 <n <N) o ;;46‘);7;
Py =0 .. .. e M
and the 1n1t1al cond1t1on : RS B o
' P (xo)-—-S(w) .. T O (8)

where S(w) is:the Dirac delta funetion N et B

SOLUTION OF THE PROBLEM' SRR

We sha]] prove bhe foIlowmg theorem for the dlstrlbutlon of the length qf "'th‘ei ”bﬁs&"
permd , SRS

Theorem 1. If

O B

-
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which is convergent for Ré(s):> o, them, - -0 Sl et dhereds
le= Nl
B T S Y

-“‘(.N—l) 1 - N P
.. |

where St e S eemperemd ol ITYT
m= , S [mh + 3] ’ o ' - ,
O (= I —E=T8 _ o<r<(N=—1) .. .5 (@
v - .‘-), “amo L—BmA o] T 8 ; )? w(O)
and O_1(s)=1 S

Proof Applying the Laplace transform in equatlon (4) with the initial condltlon (8)

we get

+ { (N—n)x—l—s—l—n(a:) }]Pn (ws)—(N—n—l— l)APn_l(ws)
(1<n Ny "I,

L),

+{(N._1)A+s+n(w9}P1 “)“8@) )

The equatlons (11)a.nd (12) can be solved recursswely and the solutxon is glven by

b= ST s (N + ()67
. pe |
X exp {(N—-n)A+sx+ fn(y)dy}](l 1<H) .09
o The boundary conditions (6) and (7) on talimg Laplace transform, reduce to,
By (05) = f P 4 (@) n@)da (1<) S

PN(o,s)——o - R
Now, changing nton41in ( 13), subst1tutmg in (14) and mtegratmg we obtam )

By (o) Z(N_”[”"’) 415 (0,8) Z(—-) ( )S[(N——n—-l+l)?«+s]

j=o . o I
+(+) ;_KH()S tN——w—-1+m+s] - BRI @

R S (1'\;<h¥< N)
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Interchanging the order of summation in the first:pagt of (16} wegebs —:sync v diui

I=n

P, (09 = Z(—) (%__;’; }j;ﬁ)s [(N—w—l+l)/\+s] 2(%_2__{13)10@,. (09)
L= e - U ot B ,
N —1
+( )Z =) ( )f(zy_n+1+m+s](1 n<N) (1)

After groupmg the terms in (17), snnple mampula.tmn y1e1ds,

l=0 Lo
f,,} §
P,, (o s) == z(-— (N:Z:}—}_Z)AN""’"I“ (s) S[ —p—1 + l )}\ + s] - (18)
l=n i i : E

P e eiTiee s TV e Ty 00T oo e T V(]' < n<N) N I T- ¥ 2
where e . S Y e

T == T e
A i) = z ( )PN—-] (Os) “F ( 1)(0 & s N——I) " ;‘ - ,,

j=r

o

(- Now, changing » to N-—jin (18) multiplying ] Both wides by ( j )é ming for er i

to (N—1), and addmg (N—l) to both sides, we get
{1——8[9’\-!—3]} A, (s)—S[r_l)A+s]Ar_l (s) (N, 1) ,

SR

_AA._I (s)S[(N—-— )A.\_ ](N 1) ' (’1;9i)‘
20 1< f<N)

Let us now define T S . . )

L R R
d(s;)",fl 1—gmA+s T 20)

The reldtlons conriecting Cr gwelrbyff( 10) and OF ;giveuby (20) are L

g 8 L
o &(37—‘——7% Of,-‘—x(s‘).—‘g—L—M%O@ o

we also not]ce that C 0=1

A . ko e - :“::)1 e h
 ‘Dividing (TQ)‘B“Y{I —= S [TX"%F}S;]._} or {s) we get

A, (3) _ ‘Ar—-l (S) 1 -1 1
o) .. Ol + S E—=8(s) ( ) Gr-l(s)
AN_l(s Y S [(N ——1))\—1;-3] ( )

r

-8 18)

! 22)
Gf—-l (S) * ( )
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* changing 7 to (r—1), (r—2),....1 successwe]y i fﬁ%amiaddwg we geb-r.. o

l=r

4, 5) 1 N—l 1 R
G, (s): 4o (ot e g (s) Zl( - ) Crrle) 7 e T

1—5(s] > (1 )01—1<s> R

Now summmg aH the equatler*s in ( }8) a.nd addmg 1 to bath sides the value of Ao (s)
is; gkyen by :

HL Y |
. 8

1 — S [ s ] i ¢
Now substituting (24) in (23) and after little ‘rgarrangg‘mm{; .

(24)

we obtain, T T e B e T e e B T ot s o T

TR, R Z@‘"’T

where C_; (s) = 1 as defined earlier.

Lettmg r = (N——J),_the va,lue of Ay=3(s)i 1s given by
s oo : I=N“—1 7 . L, N
O'n (s~) N1y 1
1—§ [5] ( ! ) O
Ax_1(s) = —— ”," o SEEREES (26)

RV . N -7 1,- N :’f."v??' e e o
g 1 + ON".EI.(/) z ( z) O{—I (S) -

=0 -

Combmmg (3) and (5), taking Laplacé tmnsform and subst1tut1ng the value of .Pl(:l', s)
from (13) one can easily obtain

Do (S) =8 [(Nm-})k-'}- s] AN.,.z @ . .. . .. (27)
Substltutmg the value of (26) in (27), q~ L o
1=N—1 - i 1 o
R 1\ 1 .
- Ort 0 Z ( K ) Cl‘“l('s) oid s PO podnisy e ol e
r(s) = O — S )

o ) 1=ow1. o

which gives the result.stated -im (9% . . ... . -. - .
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This completés the proof: fthe theoren; 71 v b G e
Particular Case : | / | DI
Let us suppose that; the reﬁau‘ tlme dlatnbutlon is. exponentla.l 'w1tih mean rate B

‘ =1
Theg S(s)= M’fi— . a.nd C’; (s)= w ( W\—_}_} ) The béu,sy period distribution is

»

gi:;énby | k .!? . 1:_ . [

: z==zv—1 :
F e e Z(N——l) s[s+A][s+2A1 [s+<l——1) ]

F(s) = —n (29)
1 . E(N) s[s+A][s’+2A] ‘[éw%(ljl)hl

! P

l-o
MEAN LENGTH OF Sy S - SERI OD Cetdadps we il
For the mean-length of busy period, we have the following, |

AT

¥ Con e R I L i3 FE Tl L Wy b
) Theored: T 3 = {f 28 (2)d& < oo then the thesn-length of the bupyperiod is
=N =i i mied .

Ttr o) &t = n'z (Z\;:i ) n(—}-g%%"]i)‘—]-) S

o =1 . im= i & A

Where the empty product is equa.i to l
Proof Before proceedlng to prove the ’oheorem we notme that

1 fre osl N—1' (31)
it R e

and
a1
ds C; (s)

$==0 7 ‘..k'\ :  '7 : l=0

Now the expressmn (9) can be vmtten as -

=N g
[ (1) C'z—:(S) ] = (Nfl)—g,_—_}(—sy .. (33)

lwm=o l=d T

=;N——r,,

Differentiating both sides with respect to s and sétting s =0
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we obtain after using (31) and (32) : o F

® N N mfz_l ] Z=N“;pN_1 ,,,:H 25
!tr(t)dt =n [zZ(ZLH (W) Zl 1 ):’:1 ( e )](34

 S[mA]
which reduces to (30) after suitable s1mphﬁca.tion. -

ST A

This completes the proof of the theorem Lo o ”

- In the case of exponent1al repalr tlme d1str1but1on the mean—length of the busy permd
reduces to - ‘

N 1
R

1=1
where

.
-
/

COR(Xm) =X el E gL ~"+n' X

oo .o .

The function F ( X ;m) can be ea.sﬂy computed from the equatlons (Refer 3) -
F(Xl) = 1+ X “,ag‘n)d_ F(Xn)——nXF[X(n—l)]‘l‘ 1
and hence the mean, length -of the busy pehod can be: computed for any valueof N. .

THE LIMITING CASE

Tt can be shown that the sunple machine mterference problem teduces to ordmary ‘
queing process with the infinite number of sources under suitable limiting conditions. Tt hias
not been possible to take the limit of the distribution of the busy period in general but the
followmg theorem is proved for the l]m1tmg value of the mean Iength of the busy perlod

k Tkeorem 3 If *A-—)O N o such that N A= ' <y then the hrmtmg
value of the mean length of the busy penod is gwen by ' B e e
hm J‘ tr (t i 1__)‘, ‘. 1f4\’1; S 1 : e ‘.;: (36)
Pmof If a.ll the moments of the dlstrlbutlon s(w) ex,lst then S(s) adxmts an expanswn
of the form. IR ’
Bo)=1— s+ =5 \’}82 e e e e
where E(z) denotes the expected value.of 2. -
Consequently the expression (30) can be. wntten as" Pees . s
® =N . mele A 2 LT
vl T "’“’; ] ,E(‘f )_ R T
5 t'r(t)dt*-v] ) i 1 o e e B
R o T et E
B e = T m")+ (x )(M)z LAY

RSN

IS
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Now ey Tore AID wrln G i T
wn e ' RPN o )
1) e AR e
Hence (38) canbewnttenas v L A ‘ -
w 1=N O amA ('m)\ )2 E(aﬁ) L
Itf(t)..dt-= Ll —1—[14-0(-1—)-“ ‘T* v ~ 2 +
o’ SRR l—l e R ST ¢ N HE IRV N E,(mZ) (M')z
= me1 1 = 73 + = —
e T e e e (39)
where NA = N .. TR »i:’ Fomm - - L .
Taking limit as N—->co we obtain
| . -1
A hm f tr(t)dt = .7 z ( n) e e \‘}7:,;“(40)

which is ﬁﬁe resuIt given m (34) This compTetes the proof of ‘rhe theorem

Tt may b“e pom‘bed out that the ef]uaﬁlon (34) can Be obtamed either by di”ﬁerehtla.tmg
the Kendall'Fakécs: functionsl equation: for the: busy period.. distributton, namely . .

r(s) = 8 [M(l—r@))+ sk -~-uro oo
or by following. elementary probability anguments as pomted outin ref 3 . 59.

here. we. ha.ve obta.med ’Glus relatlon ina (hﬁerent way D

DISCUSSION ;;

¥

. We have obtarmed,.xp thls‘gagel;, 'ehe stoehastm law of the busy period The rean: length
of the busy perlod has beeni derived. The other moments can also be obtained by sucgessive
differentiation of (9). It may be revitavked: that quenc-length distribution atid wiiting time
distribution for the simple machine interference problem.have been obtained by Tékacs
usmg an altogether different techmque Palm®, Asheroft?,; Bensox:& Cox 2 have also con-
sidered machine interfererse problem urder vérious assumption on the repair fxme distribu-
tions and obtained queue-length distribution (For a complete bibliography see references

.dand 6). We believe thatiour spproach to thiis problem is revwanteanbe easily appﬁed for
more complicated 31mple machine interference problem with two types of failure. © .. -
(See Jaiswal & Th1ruvenga.dam)4 e B
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