# ON PARTICULAR SOLUTIONS OF $\nabla^4 \Phi = 0$ AND $E^4 \Phi = 0$ .

### S. K. RANGARAJAN

Central Electro-chemical Research Institute, Karaikudi

#### ABSTRACT

The correspondence between the particular solutions of the equations  $\nabla^4 b = 0$  and F' b = 0 are pointed out. The solutions obtained already by Bhatnagar¹ are compared. An elementary discussion of the operational equation  $[F_1 F_2 (L_1 + L_2)] b = 0$  is presented. The operations  $E_{\nu}^2$ ,  $E_{\nu}^4$ ,  $H_{\nu}^2$  and  $H_{\nu}^4$  are introduced.

#### INTRODUCTIÓN

The Laplacian operator is denoted by  $\nabla^2$  and can be identified with  $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$  in the cartesian system (rectangular).

The operator  $E^2$  stands for  $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial}{\partial \omega}$ . Recently, some particular solutions were obtained for the equation  $E^4 \phi = 0$  by Bhatnagar <sup>1</sup>. The correspondence between the particular solution of  $\nabla^4 \phi = 0$  and  $E^4 \phi = 0$  was not brought forth in the paper, or at least was not pointed out and hence some results relating the particular solutions of the biharmonic equation and  $E^4 \phi = 0$  are presented here.

Considering the operator,  $E^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial}{\partial \omega}$ , it can be seen that  $E^2 f(x,\omega) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial \omega^2} - \frac{1}{\omega} \frac{\partial f}{\partial \omega}$  can be transformed into a form involving the operator  $\nabla^2$  by the simple substitution:

(1) 
$$f = \omega F$$
;  
 $\frac{\partial f}{\partial \omega} = \omega \frac{\partial F}{\partial \omega} + F$  and  
 $\frac{\partial^2 f}{\partial \omega_2} = \omega \frac{\partial^2 F}{\partial \omega_2} + 2 \frac{\partial f}{\partial \omega}$  and hence  
(2)  $E^2 f = \tilde{\omega} \left( \frac{\partial^2 F}{\partial r^2} + \frac{\partial^2 F}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial F}{\partial \omega} - \frac{F}{\omega^2} \right)$ 

We define  $\nabla^2$  in  $(x, \omega, \phi)$  coordinate system and express  $\nabla^2$  as

$$rac{\partial^2}{\partial v^2} + rac{\partial^2}{\partial \omega^2} + rac{1}{r} rac{\partial}{\partial \omega} + rac{1}{\omega^2} rac{\partial^2}{\partial \phi^2} ext{ and }$$

$$abla^2 \Big( Fe^{i\phi} \Big) = \Big( rac{\partial^2 F}{\partial x^2} + rac{\partial^2 F}{\omega^2} + rac{1}{\omega} rac{\partial F}{\partial \omega} - rac{F}{\omega^2} \Big) e^{i\phi}$$

where F has been assumed to be independent of  $\phi$ .

Recalling the operation of  $\nabla^2$  in the  $(x, \omega, \phi)$  system (cylindrical polar coordinates) on functions independent of  $\phi$ , we may write,

(3) 
$$\nabla^2_{(x,\omega)} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega}$$
,

It is easily seen that,

$$(4) \quad \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial \omega^{2}} - \frac{1}{\omega} \frac{\partial}{\partial \omega}\right) \left(\omega F_{ei}\right)$$

$$= \omega \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial \omega^{2}} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) \left(F_{ei}\right)$$

and hence,

(5) 
$$E^2f = E^2 (\omega F) = \omega \left( \nabla^2 (a,w,) - 1/\omega^2 \right) F.$$

To obtain a particular solution of the equation  $E^2f=0$ , one only needs a particular solution of  $\nabla^2\phi=0$ , where  $\nabla^2$  is the Laplacian operator in  $(x, \omega, \phi)$  system and the particular solution  $\Phi$  depending on " $\phi$ " as  $\omega Fe^{i\varphi}$ ; If such a solution is found, f can be written as  $\omega F$ ;

[Note: The operator  $E^2$  is independent of  $\phi$ ]

$$E^{4}f = E^{2}(E^{2}f)$$

writing  $f = \omega F e^{i\varphi}$ 

$$E^4 (\omega F e^{i\phi}) = e^{i\phi} E^2 [E^2(\omega F)]$$

Also, 
$$\omega \nabla^2 (Fe^{i\phi}) = E^2 (\omega Fe^{i\phi})$$

consequently

$$E^4$$
 ( $\omega Fe^{i\phi}$ ) =  $E^2$ .  $E^2$ ( $\omega Fe^{i\phi}$ )  
=  $E^2$ .  $\omega$ ( $\nabla^2 x, \omega - 1/\omega^2$ ).  $Fe^{i\phi}$   
=  $\omega$ ( $\nabla^2 x, \omega - 1/\omega^2$ )  $^2 Fe^{i\phi}$   
=  $\omega$  $\nabla^4 Fe^{i\phi}$  and hence

$$\omega \nabla^4 (Fe^{i\phi}) = E^4 (fe^{i\phi})$$
 [ $\nabla^2 \equiv$  Three dimensional Laplacian operator]

To obtain a particular solution of  $E^4\phi=0$ , one can search for a particular solution of  $\nabla^4\Phi=0$  of the form  $\Phi=Fe^{i\phi}$  (F independent of  $\phi$ ) and 'convert it' to a solution of  $E^4\Phi=0$  by multiplying F by  $\omega$ .

To summarise:

consider the operators

$$E^2 \equiv \left( rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial \omega^2} - rac{1}{\omega} rac{\partial}{\partial \omega} 
ight) (x,\omega)$$

and O

$$\nabla^2 \equiv \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} + \frac{1}{\omega^2} \frac{\partial^2}{\partial \phi^2}\right) \cdot (x, \omega \phi)$$

Assume a solution of the form  $\Phi = F(x,\omega) e^{i\varphi}$  to the equation  $\nabla^2 \Phi = 0$ . Then, a particular solution of  $E^2\Phi = 0$  is  $\omega F$ ; Also if  $F(x,\omega) e^{i\varphi} = \Phi$  is a solution of  $\nabla^4 \Phi = 0$ ;  $\omega F = \psi$  is a solution of  $E^4 \psi = 0$ .

#### ILLUSTRATIONS

Obviously, if  $\Phi$  satisfies the equation  $\nabla^2 \Phi = 0$  it is a solution of  $\nabla^4 \Phi = 0$  too.

Assuming the  $\phi$  dependence of  $\Phi = Fe^{i\varphi}$  as that of  $e^{i\varphi}$  we seek the solutions of  $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial F}{\partial \omega} - \frac{F}{\omega^2} = 0$ Des Profesion and the State of the State

It is well known that

$$mx = \left\{ AJ_1 (m\omega) + BY_1 (m\omega) \right\}$$

(for any  $m \neq 0$ )

are among these.

Hence.

(7) 
$$\phi = \omega$$
  $\begin{cases} \cosh \\ \sin h \end{cases}$   $\begin{cases} AJ_1 \ (m\omega) + BY_1 \ (m\omega) \end{cases}$ 

are solutions of  $E^2 \Phi = 0$  and hence of  $E^4 \varphi = 0$ . Also,

7(a) 
$$\phi = \omega$$
  $cos mx (A^{1}I_{1}(m\omega) + B^{1}K_{1}(m\omega))$ 

are solutions of  $E^2 \Phi = 0$  and  $E^2 \Phi = 0$ .

If f is such that  $E^2 \Phi = f$  where f is a solution of  $E^2 f = 0$ ,  $\Phi$  will be a solution of  $E^4 \Phi = 0$ ; Thus we generate some more particular solutions for  $E^4 \Phi = 0$ .

Since the general solution of

$$\frac{d^2 y}{d\omega} + \frac{1}{\omega} \frac{d y}{d\omega} + \left(m^2 - \frac{1}{\omega^2}\right) y = A J, (m\omega) + B Y_1 (m\omega)$$

$$= V (m\omega), \text{ say,}$$

can be expressed as,

(8) 
$$J_1(m\omega)\left[C_1-\int_{\alpha}^{\omega}V(mx)Y_1(mx)dx\right]+Y_1(m\omega)\left[C_2+\int_{\beta}^{\omega}V(mx)J_1(mx)dx\right]$$

where  $C_1$ ,  $C_2$ ,  $\alpha$  and  $\beta$  are arbitrary constants, some particular solutions of  $E^4 \Phi = 0$  take the form as expressed by equation  $2 \cdot 18$  in the paper by Bhatnagart<sup>1</sup>.

Simple manipulations result in the new particular solutions given by equation  $2 \cdot 26$  of reference 1. Since

$$\left(\frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^2}\right) (A\omega + B/\omega) \equiv 0$$

and

$$\frac{\partial^2}{\partial x^2} \left( \frac{\partial^2}{\partial x^2} \right) (a + bx + cx^2 + dx^3) = 0$$

some more solutions of  $\nabla^4 \Phi = 0$  can be seen to be of the form,

$$(a + bx + cx^2 + dx^3)$$
  $(A\omega + B/\omega) e^{i\theta}$  and hence

(9) 
$$(a + bx + cx^2 + dx^3)$$
  $(A\omega^2 + B) = \Phi$ 

is a solution of  $E^4 \varphi = 0$ .

(a, b, c, d, A and B are arbitrary constants)

[cf: equation  $2 \cdot 30$  of reference 1]

Also from the solution of

$$\left(\frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{1}{\omega^2}\right) f = A\omega + B/\omega,$$

it is seen that

(10) 
$$[C_1 + (C_2 + C_3 \log \omega) \omega^2 + C_4 \omega^4] (a + bx)$$
 is a solution of  $E^4 \Phi = 0$ . (equation 2.9 of reference 1).

By similar arguments,

$$\omega \frac{\cos}{\sin} \lambda x \frac{I_1}{K_1}(\lambda \omega); \qquad \omega \frac{\cosh}{\sinh} \lambda x \frac{J_1}{Y_1}(\lambda \omega)$$

(11) and

$$x\omega \frac{\cos}{\sin} \lambda x \frac{I_1}{K_1}(\lambda \omega);$$
  $x\omega \frac{\cosh}{\sinh} \lambda x \frac{J_1}{Y_1}(\lambda \omega)$ 

can be proved to be particular solutions (cf. equation 2.39 reference 1)

## Polar coordinates:

The correspondence, that has been proved to exist, between the solutions of  $E^4\Phi = 0$  and  $\nabla^4 \Phi = 0$  is particularly useful in helping us to choose the proper particular solutions in other systems of coordinates.

Considering, for instance, spherical polar coordinates for which  $\nabla^2 \sigma$  assumes the form

$$\nabla^2 \sigma = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left( r^2 \frac{\partial^2 \sigma}{\partial r^2} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial \sigma}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \sigma}{\partial \phi^2} \right\},\,$$

it may first be pointed out that only those solutions of  $\nabla^2 \sigma = 0$  or  $\nabla^4 \sigma = 0$  whose dependance on  $\phi$  is as  $e^{i\phi}$  are of interest in the discussion of  $E^4 \Phi = 0$ .

It may be recalled that a typical solution of  $\nabla^2 \Phi = 0$  which is of the form  $F(r, \theta) e^{i\phi}$  is given by

(12) 
$$F = (Ar^n + Br^{-n-1}) [CP'_n(\mu) + DQ'_n(\mu)]$$

The particular solutions of 
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \mathcal{O}}{\partial r} \right) = Ar^n + Br^{-n-1}$$

will be of the form  $A'r^{n+2} + B'r^{-(n-1)}$  and hence there exist particular solutions of  $E^4 \Phi = 0$  which are of the form,

$$(13) \left(\frac{B}{r^n} + A'r^{n+3} + \frac{B'}{r^{n-2}} + Ar^{n+1}\right) \left\{a_1P'_n(\mu) + b_1Q'_n(\mu)\right\} \left(r\sqrt{1-\mu^2}\right).$$

(cf. equation  $3 \cdot 19$ , reference 1)

In the degenerate case, n=0, we may easily prove that the solutions will be

(14) 
$$(B + A'r^3 + B'r^2 + Ar) (a_1 + a_2 \mu).$$

It can be shown that a solution of  $\nabla^4 \Phi = 0$ 

can be given in the form  $r^m f(\mu)$  where f is a solution of

$$\[ \frac{\partial}{\partial \mu} \left( 1 - \mu^2 \right) \frac{\partial}{\partial \mu} \right) + (m - 2) (m - 1) - \frac{1}{1 - \mu^2} \] \left\{ \frac{\partial}{\partial \mu} \left[ \left( 1 - \mu^2 \right) \frac{\partial}{\partial \mu} \right] + m (m + 1) - \frac{1}{1 - \mu^2} \right\} f = 0$$

A typical solution will be given by

(15) 
$$\left\{ \frac{\partial}{\partial \mu} \left( (1-\mu^2) \frac{\partial}{\partial \mu} \right) + m (m+1) - \frac{1}{1-\mu^2} \right\} f = 0$$

which can be expressed as  $A P'_{m}(\mu) + B Q'_{m}(\mu)$ 

Also, If

(16) 
$$\left\{ \frac{\partial}{\partial \mu} \left( (1 - \mu^2) \frac{\partial}{\partial \mu} \right) + m (m+1) - \frac{1}{1 - \mu^2} \right\} P(\mu) = A_1 P'_{m-2}(\mu) + B_1 Q'_{m-2}(\mu),$$

(17) 
$$\begin{cases} r^{m+1} f(\mu) \sqrt{1-\mu^2} & \text{is a typical solution of} \quad E^4 \phi = 0 \text{ with } f(\mu) \text{ of the form} \\ A P'_m(\mu) + B Q'_m(\mu) + A_1 P'_{m-2}(\mu) + B_1 Q'_{m-2}(\mu) \end{cases}$$

If m=1, it can be easily shown that the solutions so derived will correspond to those obtained already in equation  $3 \cdot 30^*$  of reference 1.

In the particular case of solving the equation  $(L_1+L_2)^2 \phi=0$  where the linear differential operators  $L_1$  and  $L_2$  are independent—in the sense that  $L_1$  operates only on  $f(\xi_1)$  and  $L_2$  on  $\psi(\xi_2)$  where  $f(\xi_1)$  and  $\psi(\xi_2)$  are arbitrary functions of the coordinates  $\xi_1$  and  $\xi_2$ . As an illustration, we may note Laplacian  $\nabla^2_{x,\omega}$  in cylindrical coordinates, is of this form

$$egin{align} egin{align} igtriangledown^2_{(x,\omega)} &\equiv L_1 + L_2 \,; & L_1 &\equiv rac{\partial^2}{\partial x^2} \;; \ & L_2 &\equiv rac{\partial^2}{\partial \omega^2} + rac{1}{\omega} rac{\partial}{\partial \omega} \,; \ \end{aligned}$$

To obtain particular solutions of  $(L_1 + L_2)^2 \phi = 0$  ie.  $(L_1^2 + 2L_1L_2 + L_2^2) \phi = 0$ , we assume  $\phi$  to be of the form  $X(\xi_1) Y(\xi_2)$  and dividing the equation by XY, one obtains  $\frac{L_1^2(X)}{X} + 2\frac{L_1(X)}{X} \cdot \frac{L_2(Y)}{Y} + \frac{L_2^2(Y)}{Y} = 0$ . This suggests that the solution can

be determined by solving for X and Y from

(18) 
$$(L_1 \pm \lambda) X = \theta$$
 and  $(L_2 \mp \lambda) Y = g(\xi_2)$  where  $(L_2 \mp \lambda) g = \theta$  or (18a)  $(L_2 \pm \lambda) Y = \theta$  and  $(L_1 \mp \lambda) X = f(\xi_1)$  where  $(L_1 \mp \lambda) f = \theta$  where  $\lambda$  is a constant.

Illustrations:

If 
$$(L_1 \pm \lambda^2) f = \theta$$
,

$$f(\xi_1) = a \frac{\cos}{\cosh} \lambda X + b \frac{\sin}{\sinh} \lambda X$$

according as the upper or lower sign is chosen. Hence any solution of  $(L_1 \mp \lambda) X = f(\xi_1)$  can be expressed as

$$X \equiv \frac{\cos}{\cosh} \lambda x (a_1 + b_1 x) + \frac{\sin}{\sinh} \lambda x (c_1 + d_1 x).$$

If  $\lambda = 0$ , it can be easily proved that  $X = a_1 + b_1 x + c_1 x^2 + d_1 x^3$ .

Similarly, if  $(L_2 \pm \lambda) Y = 0$ ,

$$Y = A_1 \frac{I_1}{J_1} (\lambda \omega) + B_1 \frac{K_1}{Y_1} (\lambda \omega)$$
 and  $(A_1 \omega + B_1/\omega)$   $(\lambda = \theta)$ 

<sup>\*</sup>It may be pointed out here that the solutions  $r\mu^2$ ,  $r^2\mu^2$  are not "new" as given in reference 1, equation  $(3\cdot30)$  but are implicitly stated through equations  $3\cdot19$  and  $3\cdot8$  of reference 1 for n=1. Also refer Appendix.

Hence the particular functions  $\omega XY$  expressed as

$$I:\omega\left\{A_1 rac{I_1}{J_1}\left(\lambda\omega
ight) + B_1 rac{K_1}{Y_1}\left(\lambda\omega
ight)
ight\} egin{cases} \cos \lambda x \left(a_1 + b_1 x
ight) + rac{\sin}{\sinh} \lambda x \left(c_1 + d_1 x
ight) 
ight\} \lambda 
eq 0.$$

where  $A_1$ ,  $B_1$ ,  $a_1$ ,  $b_1$ ,  $c_1$ ,  $d_1$  and  $\lambda$  are arbitrary constants and

$$II: \omega \left(A_1\omega+B_1/\omega\right)\left(a_1+b_1x+c_1x^2+d_1x^3
ight), \ (\lambda=\theta)$$
 are solutions of  $E^4\left(\omega XY\right)=\theta$ .

Also, the solution of

$$(L_2 \pm \lambda) \; Y = \left\{ \; A_1 \, rac{I_1}{J_1} (\lambda \omega) + B_1 \, rac{K_1}{Y_1} (\lambda \omega) \; 
ight\} \; \; \lambda 
eq 0$$

can be proved to be

$$\begin{split} C_1 \frac{I_1}{J_1} (\lambda \omega) + D_1 \frac{K_1}{Y_1} (\lambda \omega) - \left[ \frac{I_1}{J_1} (\lambda \omega) \int \omega \frac{K_1}{Y_1} (\lambda \omega) \left\{ A_1 \frac{I_1}{J_1} (\lambda \omega) + B_1 \frac{K_1}{Y_1} (\lambda \omega) \right\} d\omega \\ - \frac{K_1}{Y_1} (\lambda \omega) \int \omega \frac{I_1}{J_1} (\lambda \omega) \left\{ A_1 \frac{I_1}{J_1} (\lambda \omega) + B_1 \frac{K_1}{Y_1} (\lambda \omega) \right\} d\omega \right] \end{split}$$

where  $A_1$ ,  $B_1$ ,  $C_1$  and  $D_1$  are constants. Hence some solutions of  $E^4(\Phi) = 0$  are

$$\Phi = \omega XY = \omega \left\{ a_1 \frac{\cos}{\cosh} \lambda x + b_1 \frac{\sin}{\sinh} \lambda x \right\} \delta \left\{ C_1 \frac{I_1}{J_1} (\lambda \omega) + D_1 \frac{K_1}{Y_1} (\lambda \omega) \right\}$$
III:
$$- \frac{I_1}{J_1} (\lambda \omega) \int \omega \frac{K_1}{Y_1} (\lambda \omega) \left\{ A_1 \frac{I_1}{J_1} (\lambda \omega) + B_1 \frac{K_1}{Y_1} (\lambda \omega) \right\} d\omega$$

$$J_1$$
,  $J_1$ ,  $J_2$ ,  $J_3$ ,  $J_4$ ,  $J_4$ ,  $J_5$ ,  $J_5$ ,  $J_5$ ,  $J_7$ ,  $J_8$ ,

For  $\lambda = 0$ ,  $\omega XY$  will be of the form,

IV: 
$$(a_1 + b_1 x) \omega A_1 \omega + B_1/\omega + C_1 \omega \log \omega + C_2 \omega^3$$

The solutions I, II, III and IV have already been shown to be solutions of  $E^4 \phi = 0$  in this paper, equations 7, 8, 9, 10 and elsewhere (reference 1, equations 2.9, 2.18, 2.26 2.31, 2.39 and 2.44)

In case the operator is of the form  $f_1(\xi_1) f_2(\xi_2) (L_1 + L_2)$  where  $L_1$  and  $L_2$  are in terms of  $\xi_1$  and  $\xi_2$  coordinates only, let us assume a solution of the form  $\frac{x(\xi_1)}{f_1(\xi_1)} \cdot \frac{y(\xi_2)}{f_2(\xi_2)}$  so that

$$\begin{split} f_1\left(\xi_1\right)f_2\left(\xi_2\right)\left[\begin{array}{c} \frac{y}{f_2} \ L_1\left(\frac{x}{f_1}\right) + \frac{x}{f_1} \ L_2\left(\frac{y}{f_2}\right)\right] = & f_1 \ y \ L_1\left(\frac{x}{f_1}\right) + x f_2 L_2\left(\frac{y}{f_2}\right) \\ f_1f_2\left(L_1 + L_2\right)\left\{ \left(\frac{x}{f_1}\right) + x f_2 L_2\left(\frac{y}{f_2}\right)\right\} = & f_1f_2\left(y \ L_1\left(\frac{x}{f_1}\right)\right) \\ + & f_1 \ L_1\left(\frac{x}{f_1}\right) L_2\left(y\right) + f_2 \ L_2\left(\frac{y}{f_2}\right) L_1\left(x\right) + x L_2\left(f_2 L_2\left(\frac{y}{f_2}\right)\right)\right\} \end{split}$$

and hence, representing the operator  $f_1f_2\left(L_1+L_2\right)$  by  $f^{\delta}\xi$ 

$$\frac{f^{\delta^2 \xi} \left\{ \frac{xy}{f_1 f_2} \right\}}{xy} = 0 \text{ implies}$$

(19) 
$$\frac{L_1 \left[ f_1 L_1 \left( \frac{x}{f_1} \right) \right]}{x} + \frac{L_1 (x)}{x} \frac{L_2 (y)}{y} + \frac{L_2 (y)}{y} \cdot \frac{f_1 L_1 \left( \frac{x}{f_1} \right)}{x} + \frac{L_2 [f_2 L_2 (y/f_2)]}{y} = 0$$

For the special case when  $f_2(\xi_2) = 1$ 

(20) 
$$\frac{L_1\left\{f_1\left[L_1\left(\frac{x}{f_1}\right)\right\}\right]}{x} + \frac{L_2(y)}{y}\left\{\frac{L_1(x)}{x} + \frac{L_1(x/f_1)}{x/f_1}\right\} + \frac{L_2^2(y)}{y} = 0$$

It can be seen that the condition  $\frac{L_2(y)}{y} = \lambda$  implies,

(21) 
$$\frac{L_1\left\{f_1\left[L_1\left(\frac{x}{f_1}\right)\right]\right\}}{x} + \lambda \frac{L_1(x)}{x} + \frac{L_1(x/f_1)}{x/f_1}\right\} + \lambda^2 = 0$$

from which an expression for X can be derived. If  $\frac{L_1(x)}{x} = a_1$  and also  $\frac{L_1(x/f_1)}{x/f_1} = a_2$ 

(i.e. if both X and  $X/f_1$  are eigen functions of the operator  $L_1$ ), we find that

$$a_1 a_2 + \frac{L_2(y)}{y} \left\{ a_1 + a_2 \right\} + \frac{L_2^2(y)}{y} = 0$$

(22) or 
$$(L_2 + a_1)(L_2 + a_2)y = 0$$

where  $\alpha_1$ ,  $\alpha_2$  are constants. This equation can be solved easily for Y thereafter, and the complete solution thus obtained.

### ILLUSTRATION

Spherical coordinates:

$$L_1 \equiv \frac{\rho}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) \; ; \; f_1 = 1/r^2$$
  
 $\equiv \theta(\theta + 1) \; ; \; \theta = \frac{\partial}{\partial z} \text{ where } z = \log r.$ 

For the operator  $L_1$ ,  $r^n$  will be an eigen function with the eigen value  $(n^2 + n)$  so that  $r^n - 2$  will be an eigen function with the eigen value  $(n^2 - 3n + 2)$ .

i.e. 
$$\frac{L_1(r^n)}{r^n} = n(n+1)$$
 and  $\frac{L_1(r^n/r^2)}{r^{n-2}} = n^2 - 3n + 2;$ 

correspondingly, one can solve (for Y) the equation

$$[L_2 + n(n+1)][L_2 + (n-2)(n-1)]y = 0$$

Some of the solutions can be,

$$Y = A_1 P'_n (\mu) + B_1 Q'_n (\mu)$$
 and  $A_1 P'_{n-2} (\mu) + B_1 Q'_{n-2}$ .

In particular, for n=2

$$Y = A_1 P_2'(\mu) + B_1 Q'_n (\mu)$$
 and  $(A_1' + B_1'\mu)/\sqrt{1 - \mu^2}$  or  $A_1\mu\sqrt{1 - \mu^2}$  and  $(A_1' + B_1'\mu)/\sqrt{1 - \mu^2}$ ,

confining to the Legendre function of the first kind. A solution can therefore be written as  $A_1 \mu \sqrt{1 - \mu^2}$  or  $(A_1' + B_1' \mu)/\sqrt{1 - \mu^2}$ . Consequently, the solutions for  $E^4 \phi = 0$  can, hence be expressed as  $rA_1 \mu (1 - \mu^2)$  and  $r(A_1' + B_1' \mu)$ 

 $A_1$ ,  $A_1$  and  $B_1$ : arbitrary constants).

Similarly one can derive the solutions corresponding to other powers.

Discussions of a similar nature can be extended to some other operators as well. Defining  $E_{\nu^2} \equiv \frac{\partial^2}{\partial \omega^2} - \frac{\nu}{\omega} \frac{\partial}{\partial \omega} + \frac{\partial^2}{\partial \omega^2}$ , it can be proved easily that

$$(23) E_{\nu^2} \left( \begin{array}{c} \frac{\nu+1}{\omega^2} F \end{array} \right) = \omega^{\frac{\nu+1}{2}} \left\{ \frac{\partial^2}{\partial \omega^2} + \frac{1}{\omega} \frac{\partial}{\partial \omega} - \frac{(\nu+1)^2}{4\omega^2} + \frac{\partial^2}{\partial x^2} \right\}$$

which corresponds to the operation of the three dimensional Laplacian  $\nabla^2$  on a function which varies with  $\phi$  as  $e^{i}$   $\left(\frac{\nu+1}{2}\phi\right)$ 

For  $\nu = 1$ ,  $E_{\nu}^2 > E^2$  discussed in the paper, and  $\frac{\nu + 1}{2} = 1$ ; Hence,

(24)a 
$$E^{\sqrt{4}}\begin{bmatrix} \frac{\nu+1}{2} & i \frac{\nu+1}{2} \phi \\ \omega & F(\omega, x) e \end{bmatrix} = \frac{\nu+1}{2} \sqrt{\frac{\nu+1}{2} \phi}$$

and hence corresponding to a solution of  $\nabla^4 \left( F e^{i \frac{\nu + 1}{2} \phi} \right) = 0$  with F independent

f  $\phi$ , a solution of  $E_{\nu}^4 f = 0$  exists such that  $f = \omega F$  . An operator of the form

 $H_{\nu} \equiv \left( rac{\partial^2}{\partial \omega^2} - rac{
u}{\omega} \, rac{\partial}{\partial \omega} + rac{\partial^2}{\partial x^2} - \kappa^2 \, 
ight)$  will correspond to the Hamiltonian

(25) 
$$(\nabla^2 - \kappa^2)$$
 since  $H_{\nu} \left( \frac{\nu+1}{\omega} \right) = \omega^{\frac{\nu+1}{2}} (\nabla^2 - \kappa^2) \left( F e^{i\frac{\nu+1}{2}\phi} \right)$ 

with F independent of  $\phi$ .

Acknowledgement—The author expresses his sincere thanks to Professor K.S.G. Doss, Director, Central Electrochemical Research Institute, Karaikudi for his keen interest and encouragement.

## APPENDIX

To solve

$$A(1) \left(1 - \mu^2\right) \frac{d^2}{d\mu^2} \left\{ \left(1 - \mu^2\right) \mu'' \right\} + 2a \left(1 - \mu^2\right) \mu'' + \left(a - 3\right) \left(a - 1\right) \mu = 0$$

(cf: equation 3.22, Reference 1)

Denote by  $\theta_1$  and  $\theta_2$  the operators  $\left(1-\mu^2\right)\frac{d^2}{d\mu^2}$  and

$$\left\{ \left( \, 1 - \mu^2 
ight) \, rac{d^2}{d\mu^2} - 2 \mu \, rac{d}{d\mu} - rac{1}{1 - \mu^2} \, 
ight\}$$

เพียน หนึ่ง ครั้ง ค่ำ เริ่ม

respectively; By simple calculations, it may be shown that

$$\theta_1 \{N(\mu) \sqrt{1-\hat{\mu}^2}\} = \sqrt{1-\mu^2}. \ \theta_2 \{N(\mu)\}$$

so that

$$\theta_1^2 N(\mu)\sqrt{1-\mu^2} = \theta_1[\sqrt{1-\mu^2}, \theta_2^2 N(\mu)] = \sqrt{1-\mu^2}, \theta_2^2 N(\mu)$$

Equation A(1) can be transformed into the form

A(2) 
$$\theta_1^2 \mu + 2\alpha \theta_1 \mu + (\alpha - 3)(\alpha - 1)\mu = 0.$$

 $N\sqrt{1-\mu^2}$  is a solution of A(2), provided N satisfies the equation,

A(3) 
$$[\theta_2^2 + 2a\theta_2 + (a-3)(a-1)]N = 0.$$

Denoting the roots  $(-a \pm \sqrt{4a-3})$  of the equation  $x^2 + 2ax + (a-3)(a-1) = 0$  by  $a_1$  and  $a_2$  respectively, we find that

$$N = A_1 P_{n-1}^1(\mu) + B_1 Q'_{n-1}(\mu) + A_2 P_{n-3}^1(\mu) + B_2 Q'_{n-3}(\mu)$$

where 3 + n(n-3) has been written for a.

The solution of  $(D^2 - 3D + 3) R = \alpha R$ 

(cf: equation 3.20, reference 1)

can be expressed as  $R = C_1 r^n + C_2 r^{-(n-3)}$ .

(note:  $\alpha = 3 + n(n-3)$ ). Hence, a solution of  $E^4 \Phi = 0$  will be,

$$[C_1r^n + C_2r^{-(n-3)}][A_1P'_{n-1}(\mu) + B_1Q'_{n-1}(\mu) + A_2P'_{n-3}(\mu) + B_2Q^1_{n-3}(\mu)] - (\sqrt{1-\mu^2})$$

 $(A_1, B_1, C_1, A_2, B_2, \text{ and } C_2 \text{ are arbitrary constants}).$ 

This result has been implicitly stated through equation (17) of this paper.

In particular, for n=1,  $\alpha=1$  and the solutions given by equation  $3\cdot 30$  of reference (1) can be *deduced*.