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ABSTRACT

InPART A of the present paper the form function for a bitubular charge i.e., a twin per-
forated cylindrical grain has been derived for both. the phases of combustion and its‘general
properties have been discussed. In part B the charge has been modified by cutting-out in the '
very beginning, the slivers remaining at the end of first phase of combustion and the surface
ifihibited from burning, thus eliminating the complicated gecond stage of burning. The form
function for such a modified bitubular charge also has been obtained and its properties have
been discussed. TR

INTRODUCTION

Tt is known that multitubular powders have become popular and almost standard in
United States and many other countries. Tavernier’>? and Guptad have discussed the
theory for heptatubular powders, while Kapur and Jain? have discussed the form func-
tion for modified heptatubular and tritubular charges. Corner? has mentioned about a
long twin perforated cylindrical grain which had been ‘used for experimental purposes in
Englend but the form function and its properties have not been discussed so far.

In part A of this paper the form function for a bitubular charge for both the phases of
combustion has been derived and its general properties discussed. In part B the form func-
" tion for a modified bitubular charge (i.e., & bitubular charge in which the complicated.second
stage of burning has been eliminated by cutting eut in the very beginning the slivers re-
maining at the end of first phase of combustion and inhibiting the surface of the slivers from
burning) has been obtained and its properties discussed.’ Values of different parameters
ocecurring in our treatment have also been tabulated for different sets of values of m and p
in case of the modified charge. As is clear the internal ballistics of a bitubular charge will -
" remain the same as that of a heptatubular charge discussed by ~Tavernier? and Gupta®
except changes in the values of the constants, the same has therefore not been discussed.

NOTATIONS
) . {
— The exterior diameter of the charge grain.

The diameter of the holes of the grain. '
= The length of the grain. - ' : L

— The distance between the two holes. or between any hole and the curved surface
of the grain i.e., the web size of the grain.

“H&‘.b‘
{

m = The ratio of the exterior diameter of the grain to the diameter of any hole =

SERNIS

p = The ratio of the length of the 'g;‘ain to the exterior diameter of the grain =
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T :
= Initial surface of the grain. : 4
Surface of the grain at. any instant t. , : S -

Fraction of the charge burnt at any 1nstant £

= Fraction of the initial thickness (web size e) remaining at any instant t, for
the first phase of combustion; while for the second phase of combustion defined
a8 the ratio of the distance receded (from the beginning of the second phase upto

the instant considered) to the initial thickness e.

I

Snmmw
i

= Propellant density.

V, = Initial volume of the grain.

V = Volume of the grain at any instant t.
 Part 4

Qo

-

We shall consider the two sté,ges of combustion:

() before the rupture of the grain.
() after the rupture of the grain.

FoRM FUNCTION FOR THE FIRST PHASE OF COMBUSTION

The cross section of a bitubular grain will appear as shown in figs. 1 and 2

Fig 2—Bitubular charge when a fraction

Fig. 1—Bitubular charge .

- _ " f of e rtemains.

We have as defined edrlier,

D=mi oo L o ()
L = mpd .. O )|

and from fig. 1 ' - : '
| D=24%=mi  * DR .. )

" — 9 -
. e =~ , . @)

[ X] ' 3



T

- On the Form Function and Prqp:er%ic{sb’fBit&Eml:xr Powders

he'initial volume V', of the grain is given as: 7

e {e () -2(_«;)}

- Tife i :I{: of the grain at any mstant t is gwen as

[ - S mw

S S ! R
. (6)‘ :

. _‘ w
\[3mp—(m;2)-<1——f)]~

[9m2—(m~2)= (@ *f)sm 18-——6(m2~—4) @ -——f)]

ol ; -
Pl nts s
Fiigbecse

The fra.ctlon of the grain burnt at an 1nstant t is | | » 7
AL v : R S
e .o . S (8}*,

Z::—-————-.V—S-——— = 1 — Vc “s R R S

Usmg (5) a.nd (M) i in (8), we ha,veonmmphﬁcatlon ISR
o (mi—4) (m—2) (m— 2P _ 2Am? —4) (m— 2) (m~—-2)3 ,
Z=(1\“f)[{3(m2 2)Jr 3mp +9(m2 .2_) 9mp(m2-2) 27mp(m=.__2)
(m— 2)? 2(m2——4) (m—2) Z(m__z)s }
dmE—2) ~ OmpmE—2) 27mp(m2—-2) f
{ - }fz T T ,'-',(9)

2T m p (m? —2)

VOI‘ ‘ \ \ : ‘A L0410 ; - AT it R

z=(17—f)(d~~—bf-»0f2)--- B TE )

- where

L= 27"5?:(;223—2)\[21”‘”P+3°mp+2(m,+1)2]{ ey

(m—2)?2
2Tmp (m2

b= ) [3mp--8m-—8] 1)

m—2p
‘O-— 27mp(«m2__2) n..,.,_

4 "' il ' ' \"(‘lﬁ)i
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(10) is the relatxon between Z ind f for the ﬁ’mbvpemd of' wmhusmson 5 'we put f = Q in
(10), we get Z=a, which gives the fraction of the grain burnt- at the end of the first phase
of combustion, that is at the rupture of the gram ‘ ;

From (4), we see that m3>2,

and from (2) and (4), we have .

3e . C : - )
/v’.. .o .. e . .. e .. 1

I

| from which we see that if

I m—2
PS —3

L is less than or equal to ¢, which means that total combustion of the grain. precedes the
rupture or coincides at the point of mpture of the gram Therefore  as explained by
Tavernier! we should have

m— 2 ' Co ' : .
p> S .. v .. . ve e .. (15)

N ~which means that there is deﬁmtely a rupture at f 0
" Writing (11) as -

a—a(m)+ a‘ﬁm) e e e 18)
wilere | v
(m— 2) (21 m + 30) '
°T . 2T (m?P—2) ' (17),
and v . |
_2(m—2) (m+ 1)
‘ “WT T m (i —2) - (18)
Differentiating (17) and \(18) Wé get 4 .
da, d(m+1)(m+2) . D '
dm = g(mz__?)z . .. .. .. .. (19)
and o ,
da, d(m+1) (m*+2m —2) @)

dm 27T m? (m2 —2)2

~ From (19) and (20) it can be seen that -%;—;L and Z‘Z are always pq’sitive for possiblé
values of m, - . '

Therefore a is an’increasing function of m and g decreasing functin of p. :

R
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Thé_réfofe for a/givén value of m

—2) 6 1 L -
w@z=ﬂ.;”(1T%{ +30+ ——(ﬁi‘é’&] L. . (22)

~a value independent of m. -

-

"Also for a given va.lue of m, a 1s minimum when pis maxnmum ie. .y p = 4 ©
Therefore 2o
(m — 2) (21 m‘+‘ 30)

Ciin = % (8 — = a, (m) “ P eolll .. (23)_
Whenm =2, a, ‘(m)= 0, and when m = o, a, (m) = 27 = T77

/

@, (m) varies from 0 to «7 77, when m varies from 2 to .

q _
- We know that S is proportlonal to —== and therefore

\ -

o de e ; . PR
s & e B
= (dz) ‘, L " , : .. (24)}
| af ] 1= . |
Differentiating (10) we have. '
,_d}_=~(a+b)+2(b—,,9)f+3cf2 I (2
and | ‘ | v
. . - dz . v ‘ NG v' B - B - . .
(T) =edbien o es . (26)
o a+b 2(b—¢) "3e . g . b .
8, T a—b—c T a—b—c f“.'{ a—b—c f e @n
or . ! \ . 3 ,
8 : ‘ ' : ’
K] = d""“ﬂf——'yfz e ; . Ceel il it lde e e ‘28)
W_here;f ) : - ' ‘ o .
_a+b  2(m41) dmp—m+3} T (29)
“—.‘;a———b—c"“-32m3p+4mp—[—m2_——2}”""‘» et e U
o 2(—0  2m—2) mp—3m—2 e
’8—7‘ a—b—c 3,2m’P+4mp+m’——2},“'_j.~ S ; o ,‘30).
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__ 8¢ o C(m—2) -
.‘i?‘: w___b_;_o ""'fy3 2m2.p+4mp+m2__2l » e Y . (31)

S
- (28) glves the relatlon between —§~ and f for the first phase of combustion, and 1f we put
f——-Q, in (28) we get

'S
3 =, Whlch is the ratio of the snrface at mpture to the mmal sur-
o .

fa.ce '

St .

From (28) fve have

r (g ) =;fﬂ—sy—2'yf‘..‘ ‘ R }\ i L (32) s

daf o
and - : ‘ - ‘
a2’ S S . /
"‘df._z (So ) -7-"-"'-27 ) . . . " - . .o ) (33)
- \ o a [(8Y. .
But from (31) we see thatyisalways positive, therefore —?l?? 5 )8 always negative, -

e}

df ( ';o ) isa decrefa,sing function of f

" Now when f=1, ie., at the beginning of the combustlon of the grain we have from (32)

d (8 2 (m—2) {2m+ 4 —mp}
“daf (‘E‘:)—_’ﬂ_&y 3 2mip+4mp -+ m?—2 "(34)
and when f = 0, i.e., at the rupture of the grain -
L4 (8 g — 2(m—2) {3m -+ 2—mp} :
F\S) == st imp Fm— 2! - (39)
Therefore for —g—— to have a maximum value at any point between the beginning of com-
- bﬁéﬁibn and the iﬁpture of the grain, we must have ~ ' | ‘ -
7 d (8 [_4__(5_)] | S “
[W(So)]f=l g \S =0 <° R - (36)
je, 2m+4—mp 3m+2—mp- <O TR N 14
The first member- of this inequality becomes.zero for ’
' 2m+ 4 o T
pl—_:—T‘ .e foe v . SRR .. v._ (38)
- axitizfjhé seeond hiember for | ;

Vg = po
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8
Therefore for the existence of a max1mum value of 5P should lie I‘)etween py 80d p2

From (38) and (39) lt can be easﬂy seen that Py and py 8T both decreasing functlons of m.

Alsowehave S ' - S LA

m— 2

’ - = ) .. Cietel oy
PP m . <

. (49)

-, In every case p,>p,, since m>2. =

For g to have a maximum value, %.— (—-—g- )= 0, so that from (32) we have—B—2yf=0
. | :
B 3my2—mp - ' '
f——— 27 = g m_2 . o ‘t‘y} o ,' e . (41)

(41) can also be written as

f=1—~———g;ﬁ:1 FE e CEE TR o (42)
We have from (34)," (35), (38) and (39) o | ‘

| 4 S_) _ 2mm =9 () o | .

| df -1 3 2mEptfamp4+mi—2 .. (43)
and _ . =

[ 8 (i _ 2mm—2) (p—p) !t

| df S, Jlf=0 3 2mPp A 4mp+ mP—2; e e
Hence :

(%) For ln-g,-;,,z— L<p <oy %l]-(—g—») is always 'p,ogitiw_a, accordingly the powder

i3 degressive throughout, as in the cases when m-= f,p=horm=4p=1,
d S -\. o - , .
(1¢) Forp, < p < Py i (T) is negative in the beginning and then positive,
. O
aceordingly the powder is first progressive and then degressxve, as in the cases

when m = 4, P=T ;orm="Tp=3. ~

.(iii) For p = py —37( ‘g ) is always negative, accordingly the powder is QIWays
° ' 7

progressive, as in the cases when m = 4, p = ~2-;‘ orm="1T,p= -—2- s or

; m=10,;p='§-\.

i
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ﬁe results obtamed above are given: m Table 1 o
' TABLE 1 .
. Case (i) - S e Caee () : " Case (iii)
e I S Pﬁin’gpg o ’ Px"<?épa » N
e ‘Decreasing function of Z. | Increasing function "of Z in | Increasing function of Z.
I3 o the begifining, thén decreas- T
° ing function of Z. - ! o
The powder is degréssive. The powder is ﬁrst progressive | The powder is progressive. ’
o “and then degresswe L . s E

FORM FUNCTION FOB. THE SECOND PHASE OF COMBUSTION

In the beginning of the present period of-combustion the powder grain consists of two
prisms of base identical to the curvilinear triangle C D E, as shown in fig 3, and of common

length

Fig 3—4]3itubular charge duriné the second phase of combustion

S R Lee={§+m35;-gl"fﬂ}d T . W)
The radiﬁs of the arcs like D E is L ‘

D—e (m—{—‘l ' Y : ; '
op= 2zt~ nd )d..,/ L e
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- and that of ares like C’ Dor CEis ,
- 40= d+‘3 = (m'é'l)d B 71

As burning proceeds the trlangle C D E shrinks into the triangle P Q R. ,
Let the radius of the arcs like P @ and P R be equal to 7, then that of Q R will be

(m+1) P (‘___ e+d) (m—l—l)d__} L '. (48) v

/s

Let us now denote the ang]es OAP ACQ and PAQ by w, 9‘) and X respectlvely
We have from fig. 3 /

_ 40 _ m+1 e
Ccos w = -74? = T a .. ‘ e - .~.‘ .‘- ‘ ‘ .o (49)
T C"QB +AC2— AQ2 - Bm+-1)d — 18r __ Beos w — 3 ‘
s e= 24C.0Q T BmtDd—6r  Josw—1 - 0
and ' o ' S e -
, _A@tAc—cg .
cos(w-|—x)_ 540.AC = 3 — 4 cosw P (51) :

The complete combustlon of the gram corresponds to'd = 90°

%’i—wig = 0, whlch glves = 53°8’.V »

Durmg the second period of combusﬁon w varies from 0° to 53° 8" and’ aecordinély X
varies from 180° to 0°.

When the section of the pnsms become like P R their common length is given as _
A=IL2 (r—— "+d ——e—{pm—f— p_ m1 },d L

. 8cosw

- The complete combustion of the grain occurs when the triangle P Q R Vamshes thh the
condition that A, in the range of variation of w (0° to 53° 8') is a decreasmg function of w.

Tor this we have

A

m 41 5 '
- = 2 1) .. Cee .. .. 53
mA 1> Y g (m+1) | | (53)
or B
.5 4
P25 om

Let us write = L ; P
_ 5 4 I e T
= T T, o .
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80 that p>ps ;
Klso Ps is a,lways greater than Prmin a.nd less than p,

Let us now consider the trmngle PQR:
Aiea’ of APQR = 2 Ares PQM 4
==9 [ seetor C’QM~—— ACLP — sector APQ + AALQ]

(o r}j-‘- wemon(; ) |

36 T cos w pEry—— o —¢)

sln')‘ siny A T R
o { cos®w } { sm(vr —w— ¢) cosw }] : :

=»__(_’l‘_%.)_d_ G (w) - (55)

where

P

COSW cos®w
- COS(T — @ —o)

4o Sndsinx ] L s

sin (7 — w — ¢) cos w

Therefore the volume of the two prisms of base identical to PQR ie., the volume at any
nsta.nt during the second period of combustion is given as

2(m+1)2 d?

2 V (PQR) = 36 @A
M (w>}{pm+1;_’g&"§;}_} e

The fraction of the charge burnt at any instant during the second period of combustion is
given as :

V.5 — 2V (PQR) &

7 = Vos (58)

or : - - o
Z =1 2 (m+ 1) i 1 m+ 1 ey 59
=i Im(m? — 2) | + pm - 3pm cosw (@) e ( ,)

When w = 0° ¢=0° x == 180° ond G (w) == =, adcordingly

‘when @ = 0°, Z "is\ given as o ’
2Am+ 1) 14 1 m+1

Y(m?* — 2) - pm 3 pm

Z=1-—
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-~
/v

‘(M — 2] {21m?p + 30mp + 2(m +% , S
= 5 2Tmp(m? — 2) L oo (60)
Whlch is same as the value of o at the end of first phase of combustion.
Now when w=>53° 8, ¢= 90°, x=0°, and G'(w)LO accordmgly Z=1, the value which it
should attain.

Let us now define f agam as the ratio of the dlstance Ieceded (from the beginning of the
second phase of combustion to the instant consudered) to the lmtlal thickness e, wehave -

()
/ 2T o 2mgty w1y

e ‘6 6 cosw
(m+1) 1 : ' , . ;
= =3 1= — . . . (61)
Forw = 0°f = 0 and for w = 53° &' -
m -+ 1
f—'——_(m—2)

which is the minimum value of f and a function of m only.
With (61), (60) can be written as
Am + 1)

=1— 2Tmmp (m* —

%) [3mp—~(m—2)(1 —f)]G'(w)' o (62)

Now for the second period of combustlon we can find a relatlon between wand Sﬁ » We have
©

& - o
dz do '
T =G
_2(m + 1)(m — 2) (m+ 1) cos?w
T 2Tmmp (m2 — 32) [ {3’”” + 3' oser } (@) : ——(m + l)G(w)]
: : @)
and accordingly - :
dz
s o |
8, = (_dz_) I o
2(m + 1)[{3”74’ +3— cc::w } () ng ’ —(m+ 1) G(w)] )
- ~ 911{2m2p +. 4mp + meé — 2} - (64)
For simplification let us write - \ ,
& («) ::f w = K@ . .o .. (60)



L. 8. Kormakt e

“and

@'(w) cot @ + @ (w) =T (@) .. R .,,, (66)
then . o ‘ |
4 S 2(m+ 1) {3mp+ 1) Ke)+ (m + 1) I ()] ~
‘ R T 9 {2m?p + 4mp +m?—2} v o (67)

- Forw = 0°, K(w) = — 47 and I(w)k= — 3m, and accordingly

8 . 2m + 1) {4mp —m + 3}

8.7 3 {2mPp 4 4mp + m* — 2}

a’
the value which 5 must have at the end of first phase of combustion.

For w = 53° 8/, G (0)=0, G’(;u)———O, and therefore '—SS— = 0.

) s
', Part. B
FORM FUNCTION FOR THE MODIFIED BITUBULAR POWDER

Let us now suppose that we have a modified bitubular charge i.e., a bitubular charge
in which the slivers remaining at the end of the first phase of combustion are cut out in the
very beginningand their surfaces are inhibited from burning. The cross section of such a
modified bitubular grain will appear as shown in figs. 4 and b.

B

=
/[ aN
= R E 5 F F
A
Y‘ B
Fig. 4——Modiﬁed bitubular charge . " Fig 5—Modiﬁed~bitubu]ar ciiarge when

~ a fraction f of e. remains
: With the same notations, the exterior diameter of the grain when the inner and outer
circles touch each other as shown in fig. 3 is o
D—e=3m+1d .. .. .. (68)

The area of the base of the two curvilinear triangular prisms'i,e., of the slivers is

e . @

2 18
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ﬁese shvers are cut out in the very beglnnmg of combustmn ‘and ‘the surface mlublted
from burnmg as shown'in fig. 4, then the initial volume Vo of the grain IS givenas = ’

Vof-[ (g)z ,‘m;;l)zid _zw(‘il) ]xL N

mpomd3’
36
The Volume V of the grain at any instant ¢ is then given as

[t e SO it 0

[7m2—~4,m—~20] . N )

_ x [emd —e —-f)]
=’é§[(7mz—zm-—20)—»6(mz-—4)(1~f) (m-—2)2(1——f)2l" 3

—2 ' .
[pm (m - 3) @ - f)] - ()
'The fraction of the grain Bﬁrn’t at any insta;it t s - '
‘ ., Vs—vs ¥ s
: Z:—_.—"—I“/—B———~=1~-~I—},:a ..(72)
Using (70) and (71) in (72), we have on snmphﬁcatlon .
3mp(m-—2) —6(m2—~4)m——2(m~—2)
z=a—11— “Swp (Tn — Im — %0) b
k. R VY
__{3mp(7m2,—,_—4m‘—20) A : L - (73)
‘—(1-f)(1—Bf o o e (1)
where ) - .
. (m'—2)'(3mp—8m—f:-8).
B =" 3mp (Tm + 10) - (75)
and S L
o (m—2)p .
o’(__. g (T - 10) . ce .. (76)
Thus (74) glves the form function for the modified bitubular powders.
Dlﬂ'erentla.tmg (7 4), we have ’ »
j—; =—(1+B+2B—0f+30/ ..
and E ' T , :
‘(d?) f=1=—14+B+C .. 78
7) f=1=—1+B+0 . .(m
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8 & 1+B——2(B c;f-—sofz E
8T (dZ). T 1—B—C. : -+ (79)
. (3?) f=1 L
or ‘ R
where Lo :
§_1= o -._ﬂ'f_y'fz ¥ EREER SR e f‘f;{ﬁ:?‘f";‘. ' .. (80)
Q . : . 3 .
o 1+ B S 8(m+1)(3mp—m+2) R h (81)
“1—B— C"{l/8m2p+36mp+7m2——4m——20} v ;
B,_2(B 0 6(m — 2) (mp — 3m — 2) ) )
~1—B~C " {18m2p+36mp+7m2—-—4m—20} e
and " ' . 4
' 3¢ 3m — 2 _ . ..\(83) '

Y=I1-"B—-¢~ {18m2p+36mp+7m2 4m —20}

'The values of B,0,d,f,andy for different sets of values of m and p are glven in ta.bles

"1 to 4 while those of Z andg in terms of f for different sets of values of mandp

.~ are given in Table 5. The results of Table b are illustrated in figs.-6, 7 and 8.

10 J : I T
M= 4 . ' [ ' ' ’ l
= P ) )
s |- N T : ’ S *
e : : Q-‘ i y
'5-7/2}
ot | R . a=10 1
| \ anh
z . o0
o8 t=7iz}_
21
02 ’
0 : 1 i . 1 [l
: 02 o4 06 . 08 -0
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4 o
1 R, Lo
) : m= g } ms 7\\:'}.’ Ly 4 }_
. ‘ms‘oo,}-, t=7/2f7 te7/2 ,:f37/2 g
S o= 7211 : :
0
S \'
bO‘ .
04 L
‘ 002 e
0 - 2 ) i . N
0 o 06 04 02 )
. ,
PFig, 7
TasLe 2
M=4
7 ;
P 3 1 7 5 20 ©
B —0-2982 ' —-0{1228 0-0025 0-0175 0-0438 0-0526 N
C 0-0175 0-0088 0-0025 0-0017 " 0-0004 0-0000
a’ 05480 0-7874 1-0075 1. 0374 » 1-0921 1. 1110 '
B’ —0-4930 —0-2363 0-0000 00322 0:0908 0-1110
' 0-0410 0-0237 0-0075 0-0052 0-0012 00000




o194 ;
4 .
2 }
140 |
] B  a=h
- 3 e= 12
% :
- 06+
oot | )
0oz |-
RS T a— S S ] 12
1
Flg. 8"
" TABLE 3 ’
m=7
7 - "
U - 3 ".1 B 2, 5\ ) ,20 o
‘ 04280 | —0-1720 0-0109 -~ 0-0331 0-0718 |~ 0-0847
c 0-0403 0-0202 0-0057 | - 0-0040 00010 0-0000
& 0-4122 © 0-7189 1-0280 1-0729 1-1559 - 1-1851
| —06m49 —0-3337 0-0106 | - 0-0604 0-1527 0-1851
v 0-0871 00526 00174 | o-0125 | 00032 | - 0:0000
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TaBLE 4
m=10
P 3 1 72 6 20 ®
—0-4867 —0-1933 |  0-0162 | 0-0418 0-0853 0-1000
c ‘ 0-0533 0-0267 0-0076 " .0:0053 0-0013 0+0000
a’ - 0-3581 0-6915 1-0410 1-0922 1-1882 T 1-2222
% —0-7534 —0-3772 0-0176 0-0755 | - 0-1839 ©0-2222
¥ 0-1115 0-0687 0-0233 00167 0-0043 “ 0-0000
TABLE 5
m=:¢0
0 3 1 72 5 20 w
B —0-6190 —0-2381 0-0340 0-0666 0-1238 " 0-1428
c 0-0952 0-0476 0-0136 00095 0-0024 | " 0-0000
o 02500 " 0-6400 1-0857 1°1544 1-2862 " 1-3382
B —0-9374 | —0-4800 0-0428 0-1236 0-2779 " 0-3332
v 0-1874 0-1199 0-0428 0-0308 0-0082 0-0000
Differentiating (80) we have
» d (8
= = - . 2 ! *
7 ( So) B —2vf (84)
and ‘
a2 (8
) = — 2 o . (85
df2 So ‘ Y’ . ( )
d2

From (83) we find that o’ is always positive and therefore T

that is

i \s

d (§—) is a decreasing function of f.

Now for f = 1, (beginning of combustion);

6(m — 2) 2m + 4 — mp)

d (8 _ o e
{?l?g = =—F- 'y——{128m2p+36mp+7m3‘—~4m—20}‘

and for f= 0, (end of combustion):

6(m — 2) (3m -+ 2 — mp)

{ ( )} =—F= {18m2p+36mp+7m2—4m—-20}

S . ' .
5] = always negative

v (86)

. (87)
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Thus for g to have a maximum value in the interval of variation of f, the values of

]

a\3 ( 5 ) should have opposxte s1gns at f_— 1, and at f =0,

o[l [a8)] <

or (2m+4-——mp)(3m+2~—-mp)<o

same as (37) of Part A.
Again, the first member of (89) becomes zero for
S m 4 .
' PL= "3 R
and the second»memiberg_\ffor R o
: : Bm 42
P2 = " :

m
same as (38) and (39) of Part A, '

.. (88)

. (89)

" When we give top a value lymg between Py and Py the above mequahty will be satisfied.

and the maximum of § wﬂl appear if
o

gf(s) /3—2yf—-o..

i.e., when
B 3m+2—mp
m— 2

. which is same as (41) of Part: A,
(91) can again bhe written’ as
PP
=1
f 3Pmm

m—2

where Pmin = —g =, as expla.med in Part A

Takmg py and p, into consideration (86) and (87 ) can again be wrltten as

[_d_(ﬁ_‘)] o em(m—2)(p—p)

df \S,/ls=1" {18m% + 36mp + Tm*> — 4m — 20;

and : [ DR PRI S
[1 (é) ] - 6m (m — 2) (pg—p) =
df\S, )l =0 =" 18m% + 36mp + Tm? —4m — 20 }

Hence B o -

—9 R

0

.. (91)

. (92)’

. (93)f~

(¢) For ﬂi&n—z— Lp<Lpys b (g—) is always positive. Therefore the powder is
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degressive throughout. . . -

(i) For py < p < py, i (g) i3 negative in the beginning and then positive,

therefore the powder is first progressive and then degressive.

d O : N = . .
(#3t) Forp = p, , ‘F(i) _is always negative. Therefore the powder is progressive

throughout.
The results obtained above are given in the following Table:
Case (i)  Case (i) Case (i)
e Pmin <P <P m<e<p 0>
Iknéxk'eaksing function of Z

Increasing function of Z ‘in
the beginning, then decreas-
ing function-of Z.= .~

Decreasing function of Z

W B

o

The powder is first progreeswe The powder is progressive

The powder is degressive
- and then degressive.

'THE EQUIVALENT FROM FACTOR FOR THE MODIFIED BITUBULAR CHARGE
Following Kapur and Jain (1961), the equivalent form factor 8 for the modified bitu-

bular charge is given as R

R - Lo O (’m;—",~—,2)(Qmp—5m-—6)
a_f(B-Jr ?z)__ 2 mp (Tm + 10) - (94)

which will be negative if _, '

- R om + & PR (-

2m

The values of Q for some sets of values of m and p are given in table 6.

6

TasLe 7
* m=4, m=4, m=4, m="1, m=10, m= m, m= @
p=1 p=1 p=1/2 p=1/2 p=72 | p=T/2 b=
f —0-0137 { —0-0200 ' —0-0408 l —0- ‘1428

+-0-2895 ’ +0-1184 ' — 00037
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