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, ~ ABSTRACT

In this paper the hydromagnetic stability of anincompressible fluid of variable density in the

presence of magnetic field as well as rotation is considered. The magnetic field is taken

along axis of rotation and stratified in-the direction. A variational principlefor the prob-

lemunder consideration has been established. Two density configurations vz, (¢) density varies

?ic;x:t;iirlsuously with height and (¢%) two superposed fluids of great depths have been studied in

, ~ INTRODUCTION , .
A NUMBER - of papers on Rayleigh-Taylor _Instability in the presence of magnetic
field have appeared during past few years. They have been discussed by Chandrasekhar?.
Nearly all of them referred to homogeneous magnetic fields taken in different directions.
Talwar? has studied this problem for variable magnetic fields. The purpose of the present
paper is to bring out the new facts when a” Coriolis  Force is also acting. The problem has
been studied in 4 parts. In the first section the basic equations governing the problem
- at hand are derived. Then a variation principle is established and further it is shown that if
coriolis force and magnetic field both act in the horizontal direction the validity of the
principle imposes a condition which separates the hydrodynamics from electro-magnetism.
In the 3rd part the stability of a continuously stratified fluid has been discussed. The last
section deals with the stability of two superposed fluids. In this connection it may be pointed
out that remarks made by Reid® do not any way point to reduce the effetiveness of the
variational procedure in the present case. Also, in order to avoid the mathematical comp-
lications the fluid is assumed to be inviscid, incompressible and of infinite conductivity.

BASIC EQUATIONS :
Consider a layer of conducting fluid confined between two- horizontal planes. This is

>
subjected to a magnetic field [H (2),0,0] and rotation 2 v. The equations of the problem
*are, then : CoT
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where the symbols have their usual msaning.
The equilibrium situstion is a static one_ and is characterized by w = 0. Initially

) Po:(""‘)":‘- N W

p=p°(z) e \,m.".“
H=H,() ) .

Consider the static situation to be disturbed, so that
p=p, F8p(@myat); P=P. T 3p (z,y,24) ‘ o
. H; = Hoa‘ + hi (3’>?/,Z,t) and u; = (u,’l),’l.l)) e v ( g
( o

where @; is a unit vector in the direction of x-axis. The perturbations are assumed to be
small and thus the second order quantities are neglected. We further assume that the
fluid is rotating about z-axis (d.e. vi = 0,0,1). The case when v, = (1,0,0) is also
dealt with in the next sectiom. The linearized form of equations (1)—(5)in the cartesian

6)

co-ordinate system are 7 . v ‘
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Following the usual practice in problems of this kind, we seek the solutions of these equa-

tions which are of the form , |
U, v, W, 8p, op, h =,(Some function of 2) X el("k” T + @ky ¥+ nt)

I
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 where ks, ky are horizontal wave numbers of the per‘burbation. Equations (8)—(10)
then become ‘ , :

-
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where D = dfdz =~ T T ,
> T - :
Let w be the vorticity vector and {(z) denote its z-components. . So that
9 ou o o o
)= -é%’——a—y=zk v —iky u SIRPRRIRE (14)
From equatlon 8) : ' :
ihe By — iy By = [Ho it L+ iy w D H, ] )

Ehmmatmguand'v from equatlons (ll-z, ) vnth the help of equatlons (12-), (14) and
(15), we obtam '

__ponD’w—2.Qp°{-—8pk2+ m[ BwH,DH,—%, k Hozz]
6
- where £? = k%, 4 &%,
also from equation (11-743) we can write after simple Algebra
k2 [D(8p)+g8p—|~pofnw1 -7’;— [2#% H, DH, Dw + ¥* H? D2~w
+2k¢kyH {DH +kxky H2 D&—-I@Ic2 H2 w
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operating with D on both sides of (16), substractmg from (17) and utilizing (12-%%), we
get

k? (ponw—- — Dp, w )\-—nD(po D?v)-“z,QD(Pg 4]

~ ;;Zcrz [Dﬂg Dw + Hz (DP—yw] .. '(18)

Also eliminating 8p from (11-3), and (11-i) we get ) ,
pML—2Q p, Dw= ’1%5 ;8 2 (19)
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Boundary Conditions /

> v :
The normal component of # (.e. w) must. vanish' on " the bounding surfaces. Thus

@ w=0 forz=0,d } ,
() {=Dw=0 on a rigid surface } IR .o (20) -
(i) Dt =D =0  on a free surface Jl

Equations (18) , (19) together with the bolinda.ry conditions’ (20) constitute the basic - -
equations of the problem at hand. In the next section: we shall establish a variational
prineiple. i » : :

A VARIATIONAL PRINCIPLE

Let there be solutions w;, w; which, respectively correspond to the two charaeter-
istic values#; andn; of equations (18) and (19). & and {; are also associated respectively
with #; and nj, Multiply equation (18) by wj (corresponding to #; ) - and integrating
over the range 0 < z < d, we get : \

a - d d

' mp[kz fpowe.wg' - fij(PoDwi)] — [ 2Q f'w,-D(pOC;) ]
a 2 d d ‘
= gk? f : Dpwiw; + %—ﬂﬁ [ f (DH 2w;Dw; + Ho2wjp2w,-) — 2 IH° wiw; (21)

* Integration by parts leads to

d . d . .
| 2 : 1 e -
N ’ n,:vf [ po(Dw,-Dw,-,—}— kzw.--wj') ] + %ﬂ—zf [Hoz (Dw; DWj -+ ]c%.w,) ]
o ! - ° . ’ Y
) o i -
-+ 29n; fPoCi Dw; — gk* poow,-wj = 0 .. .. (22)

Multiply eqﬁation (195 forn; by {; and integrate by parts, we have
- 4 L d. ’
, ~ phey [ ‘ S

7j poCi cj - 29”.7' poCi Dw]+ 4w Ho ;i;j = 0 e (23) 4
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- From (22) and (23), we obtain R L T
: d ‘ d
2 luk -~ .
[ f Po (Dw; Dw, + K 'w,w,) ] [ H2 (Dw; I)w_, + k3w 'w,)

: d: , . B
) . g H]ng T . ‘2 T - - .
+min |pli G+ — | |H2G G — gk Dp, wow; =0 (24)
R omy AT ) Y -
Now put 1=, so thaﬁ n;:n,-:rz"and et‘b:Tiieh (24) becomes
4 ER. R d
n? fp° [ (Dw)® + Bw?] + “—Zﬂi f HZ2 [ (Dw) + k] + n? f P

d - R c - . . .
+“k‘fH;=—gk2powﬁ—o . .. (25)
. L N 2 R . . N
or n2l, + %Iéfh n213+’% L— g Ig=0 =-.. .. (26)

Where I;. is the i¢th integral term in equation (25).

Now, let there be a small functional variation 8w, 8 in w (2) and { (#) respectively
and compatlble with the boundary conditions (20). Let on be the corresponding
change in n. We shall assume that-8w, 8 and on are : ;mall enough to neglect their
squares, products and higher powers. I+ 81; -,- detiote the corresponding var:ation in I :
then equation (26), give

2 )
— 8n[2nl; + 2nl;) = n%l, + pk = o1, + nol, + zsz4 — gk®I, (27).

e
where  8I, = 2_[ o, [ DuDsw & Fudw ] 2 f [D (pD0) — K20 ] 0
‘az,,,='—-2'f[DH°2Dw+ Hoﬁ(sz——kz)w']‘Sw
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Substituting 8Z; in (27) and utilising (18) and (19), we get

. . d . d :
— én [ nl, + nlg ] = f2QnD (po8) 8w + f2!?np° Dwd .. (28)

~ From (19) it can easiiy 'be deduced that

8 [p°n2—+ &”—HZ] +3n[2npc—-'znpobw] ,
e 1 .09
D (3w) = . 20 pm :

Integratmg by parts the 1st ’cerm on the nght hand sule of (28) and utﬂxsmg (29),- we

obtain

— on [ nl, + nlg + f i~(§9p°Dw — 2np.) ]

] | | |
=faz [‘2anbDwk—-qn2°Z’—-sz Hzg] . .. (30)

" The bracket under the mtegra.l sign on the rlght hand side of (30) is zero because of (19) and

since
[ nl; + nly + f §(2Qp°Dw — 2np,l) ] # 0 in general

m = 0 (31)

Hence we have a variatiorial principle.

Rotation about x-axis.
In this case the lmeansed form of all the equations remam same except that of (8)

which gives

J e =-f-»\ik,8p+ & WDE, .. .. @)

PN — 2.Qp°w = — zky

H\[ khy—- ikyh;] @ Loy

pnw + Zonv = — D8p—-— g8p + - [E (zk, h, ——Dh ) —he DH ] 0 z)
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~ where vz = (1,0,0) ‘ 14 ,
Following the procedure adopted in the last case, we can derive
k2 ' . '
( pynkt — _g?{— Dp, ) w — nD (p,Dw) — 2Q4k, wDp,
. - 2 -
z

kgt = DB+ B e ]

and

PR3
P + 7

: H2 — 2Qp, ik, w = 0 .. .. (34)
From equations (33) and (34) with the help of (20) it can easily be shown that a variational
principle can only exist if i , ~

-

k=0 | ’ ~ (35)

v.e. if the disturbance is periodic in the y-direction only. This removes the effect of magnetic
field on the resulting motion which is in the horizontal rolls with their axis along the x-axis.

Thus within the scope of hydromagnetics, which is mainly concerned with the effect of
magnetic field on fluid motions, this problem can not be based on s variational method.

'

PRINCIPLE OF EXCHANGE OF STABILITIES

If we take n; and w; to be complex and n; and w; to be. their complex conjugates
respectively, we can obtain from (24) : '
1 ( pk

and k 0 }(36)
1 phz pkz ..

Be (n) [11 + I3+ Tof ('—4,,—’519 + g La— ¥ ) J:O(%) J

An examination of equétions (36) will show that either  is real or purely an imaginary

quantity. In the latter case the characteristic value of n2 will always be negative which

means stability. This impiles that even if oscillatory modes exist, they are stable. In-

other words over-stability cannot arise.

This in fact is the case which arises in the two special problems considered in the next
section. . ’ :

Continuously stratified fluid of Sinite depih

We shall now consider the stability of a continuously stratified layer of fluid confined
between two free horizontal surfaces z=0and z=d and rotating about z-axis. The perma-
nent magnetic field is taken to bein the x-direction and stratified in the z-direction.
Following Rayleigh we shall assume the density stratification law to be

Bz ; .
Pe = P e .. o es (37)
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where p; and B are consistants. Again, following Talﬁvaij we shall ass;uﬁié‘t};at“‘th”e loeal
hydromagnetic velocity is constant. Thus L

Hplp, = const =. Hplpy
Bz . :
or HE = Hff e P -
where H,2is constant. .

The trial function gatisfying the boundary conditions (20-, #4¢) is assumed to be
w = A sin smz/d , o
= Asinpz , where p = sn/d
From (19)

_ 2QApn
{= n? + bk

cos pz = B cos pz
where B = 2Qdpn [(n® + b2 k% ); bP = pH2[dmp,

 substituting from (39) and (40) in (25), utilising (37) and (38) and performing the integra-

tion, we have after some simple manipulation ‘ )

nd (14 A) + 72 (2525 (1 + X) — gBX 4 4Q%%] + bt (14 2) — gBAhE: =0 (41)
where A= 282/ @28 + B o

Equation (41)is a quadratic in n? and may be written as

Apt - Bg + 0 = 0 . .. . L )
or v ; ; .- . 5
@ = —B, + + B — 440, I . (43)

Tt can be shown that the roots.of (42) are real which indicates that-over-stability is absent.
While discussing the stability of the system we shall be interested in the unstable density
stratification viz. B>0. From (43) a necessary condition for instability is

0y <0 '

or b2 < PR/ E[2(P+F)+ E]

Thus a sufficient condition for stability is

pEE o |
e HmI@ETBT R T
It may be pointed out that in the absence of magnetic field this condition is never
satisfied. Thus a magnetic field has a stabilizing influence on the fluid motion, From (44) it
can be seen that the condition for stability is independent-of rotation. ‘

N

b2

o (44)
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Equilibrium of two supeiposed Sfluids of great depths.
In this case the density configuration is

P () = \fpl':

, LPz

0> 2> —o

<<

(45)

where p, and p, are constants. We shall assume that the magnetic field 'is\uniform but is
still in the horizontal direction. Hquations (18) and (19) then combine to give

(n? + B3R (D* — RR) w + 42D = 0. ..

the bouﬁdary conditions are
w(—®) =w(+ 0)=0
h(—w)=h(+ ©)=0|
wy (O) = w, (0) J
[k (0)]; = [ (0)];

and 8p is continuous at the physib"célr interface.

(46)

(47)

The suffixes 1 and 2 refer to the lower and upper fluids iespectively. The solution of

(46) satisfying the boundary conditions (47) is

[+ % B —0Z
‘w, = de -; w, = Ae
, az R
42 1;2 —1/2
" wh =k|l4+ —" —
where a = £ [ -l-“(%z_t_ YR ] |
o 8Qdan —9204an
I = ——— ; 02= _
n? 4 by k% : n® + b3 K
: H? L . ouwHZ2
b2 = ._LL_ T 2 WA"
! 4mp, ’ byz 4mpy

. . (48)

Now p,, is constant everywhere except in the small region e > 2z > — ¢ where the transition
from p, to p, takes place. Also we sub-divide the range of integration into 3 parts (following

Hide?) viz 0 >2>€;e> 2> —e¢and —e > 2> — o0 and " ulti

the limit'e = 0.

mately proceed to

Substitute for w(z) and {(z) in (26), we have after performing\t_he integration

€ Qo

€
——C €

—c

I= f . [ (D wp + 72 w? ].+ L0+ ,-;‘12‘)_[,92 | f ”2‘“ & _]__‘,2; f 2a dz]

—_—®
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“The contrlbutlon of the lst vanishes in the hmlt since p, (z) is finite and w’ contmuous
Thus N :

Aa(k“‘-{-a)

L= (e Fo)  L=H, 4 (Ic2 + aa
13= 022 P22+ 012 P1 - , Ig — Hzo (012"*_ 022) / 2(1
S e S R )
: Py . ) L
I [@dp =) T
P o '

where A2 is the mean value of u?at z = 0. Substltutmg in (267, we-get
Nyp+ szz—A(Pz_Pl)] N2N2+ X [N13P1 + N23P2] =0 - (49

where N, = (n2 4+ b2 k%) Nz—(mz—l—bzﬂ‘k2 )
4%a e
x2= m H . A=2 g o kg/(k’ a?
From (49)

(60)

Na Ly Ny e
p Ny ( 2N22X )—|-P2 Nz( 1N12 ) = A (Pz"?‘ﬂ:&)\_ﬂ -

Lt L=(N2+x) /N2 ; M=@E2+x) N

clearly L and M are both posmve and greater than urity.
Thus (50) glves o X T

n? (L py + M ps] = A (py : zA(L '*‘iMZ )
(6) For py < pg, m® 18 negaﬁifzé' which “corresponds to stabxhtyagamst all disturbances.
(m) Forpy > p (unstable case). A necessary-condition for mstabthty is . -oco

pHS? A( —p)
- T4m T (L+M)

Let Fm be. the value of k. whlch makes (52) an equality, there -shall be mstabxhty only,

when ‘ v , o o
' ke < kn =

where

R A(pg
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In the absence of rotatlon, L=M= 1 a=Fk

(53) reduces to ‘Talwar’s? result. When # 0, (L + M) > 2 which shows that
in the presence of rotation the instability when p, > p1 w1ll setin ata lower wave
number than in the absence of rotation.
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