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1. IntroductIon
Multi-sensor image fusion (MIF) is a technique to merge 

the information content from several images (or acquired 
from different imaging sensors) taken from the same scene 
in order to accomplish a combined image that contains the 
finest information coming from the different original source 
images1. Hence, the fused image would provide superior 
quality image than any of the original source images. Recently, 
MIF has become as a new and promising research area for 
image processing community. The benefiting fields from MIF 
are viz. surveillance, military, remote sensing, machine vision, 
computer vision, robotic and medical imaging etc. Depending 
on the merging stage, MIF could be performed at three different 
levels viz. pixel level, feature level and decision level2,3.  In this 
paper, a novel pixel-level MIF is presented that represents a 
fusion process generating a single combined image containing 
an additional description than individual source image. 

The basic MIF is to take the mean of the grey level 
registered images pixel by pixel. This technique produces 
several undesired effects and reduced feature contrast. To 
overcome these problems, multi-resolution techniques such as 
wavelets1,4-12, multi-scale transforms like image pyramids3,13-16, 
signal processing techniques like spatial frequency17, statistical 
signal processing18,19 and fuzzy set theory20 have been proposed 
and studied extensively. Discrete wavelet transform would 
provide directional information in decomposition levels and 
contain unique information at different resolutions and hence 
it is used for image fusion by many scholars4,5. In this paper, a 
novel MIF technique based on multi-resolution singular value 
decomposition (MSVD) is presented to fuse the source images. 
The results obtained with MSVD are compared with wavelet 
based image fusion. The wavelet used in this is Daubechies 2 
(db2). 

One of the important prerequisites to be able to apply 
fusion technique is the image registration i.e., the information 
in the source images needed to be adequately aligned and 

registered prior to fusion of the images. In this paper, it is 
assumed that the images to be fused are already registered. 

2. MultI-resolutIon sIngular Value 
decoMposItIon
Multi-resolution singular value decomposition is very 

similar to wavelets transform, where signal is filtered separately 
by low pass and high pass finite impulse response (FIR) filters 
and the output of each filter is decimated by a factor of two 
to achieve first level of decomposition. The decimated low 
pass filtered output is filtered separately by low pass and high 
pass filter followed by decimation by a factor of two provides 
second level of decomposition. The successive levels of 
decomposition can be achieved by repeating this procedure. 
The idea behind the MSVD is to replace the FIR filters with 
singular value decomposition (SVD)21. 

2.1 1d Multi-resolution singular Value 
decomposition
Let [ ](1), (2),..., ( )X x x x N=  represent a 1D signal of 

length N and it is assumed that N is divisible by 2K for 1K ≥
21-26. Rearrange the samples in such a way that the top row 
contains the odd number indexed samples and the bottom row 
contains the even number indexed samples. Let the resultant 
matrix called data matrix is:

1
(1) (3) ( 1)
(2) (4) ( )

x x x N
X

x x x N
− 

=  
 


                                 (1)

Denote the scatter matrix 

1 1 1
TT X X=                                                                      (2)

Let U1 be the eigenvector matrix that brings T1 into 
diagonal matrix as:

2
1 1 1 1
TU TU S=                                                                  (3)

Image Fusion technique using Multi-resolution singular Value decomposition

V.P.S. Naidu
National Aerospace Laboratories, Bengaluru- 560 017 

E-mail: vpsnaidu@gmail.com

abstract

A novel image fusion technique based on multi-resolution singular value decomposition (MSVD) has been 
presented and evaluated. The performance of this algorithm is compared with that of well known image fusion 
technique using wavelets. It is observed that image fusion by MSVD perform almost similar to that of wavelets. It 
is computationally very simple and it could be well suited for real time applications. Moreover, MSVD does not 
have a fixed set of basis vectors like FFT, DCT and wavelet etc. and its basis vectors depend on the data set. 

Keywords: Multi-sensor image fusion, multi-resolution SVD, image fusion performance evaluation metrics



DEF SCI J, VOL. 61, NO. 5, SEPTEMBER 2011

480

The diagonal matrix 
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   contains the 

squares of the singular values, with 1 2(1) (2)s s> . 

Let 1 1 1
ˆ TX U X=  so that 1 1 1

ˆX U X=                               (4)
The top row of 1X̂ , denoted 1

ˆ (1,:)X contains 
approximation component that corresponds to the largest 
eigenvalue. The bottom row of 1X̂ , denoted 1

ˆ (2,:)X contains 
detail component that corresponds to the smallest eigenvalue. 
Let 1 1

ˆ (1,:)XΦ =  and 1 1
ˆ (2,:)XΨ = represent the approximation 

and detail components respectively. The successive levels 
of decomposition repeats the procedure described above 
by placing the approximation component 1Φ in place of X. 
The above outlined procedure can be described formally. 
This procedure can be repeated recursively K times. Let 

0 (1,:) XΦ = so that the initial approximation component is the 
original signal. For each level l, the approximation component 
vector lΦ  has l

lN N 2= / elements that are represented as: 

[ ]l l l lÖ ö (1), (2),...,ö (N )l= ϕ                                          (5)
The K level MSVD for 1,2,..., 1l K= − as follows:

1 1 1

1 1 1

(1) (3) (2 1)
(2) (4) (2 )

l l l l
l

l l l l

N
X

N
− − −

− − −

ϕ ϕ ϕ − 
=  ϕ ϕ ϕ 


                 (6)

2T T
l l l l l lT X X U S U= = , where singular values to be 

arranged as 

(1) (2)l ls s≥                                                                    (7)
ˆ T

l l lX U X=                                                                     (8)
ˆ (1,:)l lXΦ =                                                                    (9)
ˆ (2,:)l lXΨ =                                                                (10)

In general, it is sufficient to store the lowest resolution 
approximation component vector LΦ , the details component 
vectors lΨ for 1,2,...,l L= and the eigenvector matrices lU for 

1,2,...,l L= . Hence the MSVD can be written as: 

{ } { }{ }1 1, ,L L
L l ll lX U

= =
→ Φ Ψ

                                  
(11)

The original signal X can be reconstructed from the right 
hand side, since the steps are reversible. 

2.2 2d Multi-resolution singular Value 
decomposition
1D multi-resolution singular value decomposition 

(MSVD) described in section 2.1 can be easily extended to 
2D MSVD and even for higher dimensions. The first level 
decomposition of the image proceeds as follows. Divide the 
M N× image X into non-overlapping 2 2×  blocks and arrange 
each block into a 4 1× vector by stacking columns to form the 
data matrix 1X . The blocks may be taken in transpose raster-

scan manner or in other words proceeding downwards first 
and then to right. The eigen-decomposition of the 4 4× scatter 
matrix is:

 T 2 T
1 1 1 1 1 1T =X X =U S U                                                    (12)

 where the singular values are arranged in decreasing 

order as 1 2 3 4(1) (2) (3) (4)s s s s≥ ≥ ≥  
Let T

1 1 1X =U Xˆ . The first row of 1X̂  corresponds to 
the largest eigenvalue and considered as approximation 
component. The remaining rows contain the detail component 
that may correspond to edges or texture in an image. The 
elements in each row may be rearranged to form / 2 / 2M N×  
matrix. Before proceeding to next level of decomposition, 
let 1Φ denote / 2 / 2M N× matrix formed by rearranging the 
row 1

ˆ (1,:)X into matrix by first filling in the columns and then 
rows. Similarly, each of the three rows 1

ˆ (2,:)X , 1
ˆ (3,:)X and

1
ˆ (4,:)X may be arranged into / 2 / 2M N× matrices that are 

denoted as 1
VΨ , 1

HΨ  and 1
DΨ  respectively. The next level of 

decomposition proceeds as above where X is replaced by 1Φ . 
The complete L level decompositions may be represented as: 

{ } { }{ }11
, , , ,

L LV H D
L l l l l ll

X U
==

→ Φ Ψ Ψ Ψ

               
(13)

The original image Xcan be reconstructed from the right 
hand side, since the steps are reversible. Figure1 shows the 2D 
structures of the MSVD with three decomposition levels. 

Figure 1. Multi-resolution decomposition structures.

3.  FusIon
The schematic diagram for the MSVD image fusion 

scheme is shown in Fig. 2. One can observe that the 
modification of the present scheme is the use MSVD instead 
of wavelets or pyramids. The images to be fused I1 and I2 are 
decomposed into ( 1,2,..., )L l L=  levels using MSVD. At each 
decomposition level ( 1,2,..., )l L= , the fusion rule will select 
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the larger absolute value of the two MSVD detailed coeficients, 
since the detailed coefficients correspond to sharper brightness 
changes in the images such as edges and object boundaries 
etc. These coefficients are fluctuating around zero. At the 
coarest level ( )l L= , the fusion rule take average of the 
MSVD approximation coefficients since the approximation 
coefficents at coarser level are the smoothed and subsampled 
verion of the original image. Similalrly, at each decomposition 
level ( 1,2,..., )l L= , the fusion rule take the average of the two 
MSVD eigen matrices. The fused image If 

can be obtained 
using :

{ } { }{ }1 1
, , , ,

L Lf f V f H f D f
f L l l l ll l

I U
= =

← Φ Ψ Ψ Ψ

    
(14)

4. perForMance eValuatIon
The performance of image fusion algorithms can be 

evaluated when the reference image is available using the 
following metrics:

4.1 root Mean square error
It is computed as the root mean square error (RMSE) of 

the corresponding pixels in the reference image Ir and the fused 
image If . It will be nearly zero when the reference and fused 
images are alike and it will increase when the dissimilarity 
increases27.

( )2

1 1

1 ( , ) ( , )
M N

r f
x y

RMSE I x y I x y
MN = =

= −∑∑
                (15)

4.2 peak signal to noise ratio

( )

2

10 2

1 1

20log
1 ( , ) ( , )

M N

r f
x y

LPSNR
I x y I x y

MN = =

 
 
 =  

−  
 

∑∑
     (16)

where, L in the number of gray levels in the image
This value will be high when the fused and reference 

images are alike and higher value implies better fusion28,29.
4.3 spectral Information divergence

The spectral information divergence (SID) can be 
computed as

( , ) ( || ) ( || )t f t f f tSID I I D I I D I I= +                           (18)

where, ( || ) log( / )t f t t fD I I I I I= , the values of  tI  and fI
should be in between 0 and 1

( || ) log( / )f t f f tD I I I I I=
The ideal value is zero and it will increase when there is 

a spectral divergence. 
The following metrics could be used when the reference 

image is not available to test the performance of the fused 
algorithms. 

4.4 standard deviation (sd)
Standard deviation is composed of the signal and noise 

parts28,30. This metric is more efficient in the absence of noise. 
It measures the contrast in the fused image. Fused image with 
high contrast would have a high standard deviation.

2

0
( - ) ( )

f

L

I
i

i i h i
=

σ = ∑ ,       
0

f

L

I
i

i ih
=

= ∑                       (19)

where, ( )
fIh i is the normalised histogram of the fused 

image ( , )fI x y  .
   

4.5 spatial Frequency (sF)
Spatial frequency can be computed as28,31,32:  

2 2SF= RF +CF                                                         (20)
where, row frequency (RF)

2

1 2

1 [ ( , ) - ( , -1)]
M N

f f
x y

RF I x y I x y
MN = =

= ∑∑
column frequency (CF)

N M
2

f f
y=1 x=2

1CF= [I (x,y)-I (x-1,y)]
MN ∑∑

It indicates the overall activity level in the fused image. 
The fused image with high activity level would have high 
spatial frequency.  

5. results and dIscussIon
National Aerospace Laboratories (NAL) indigenous 

aircraft (SARAS), shown in Fig. 3(a), is considered as a 

Figure 2. schematic diagram for the MsVd image fusion scheme.
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reference image rI  to evaluate the performance of the 
proposed fusion algorithm. The complementary pair (data 
set1) input images 1I and 2I  are taken to evaluate the fusion 
algorithm and these images are shown in Fig. 3(b) and 3(c). 
The first column in Figs. 4-7 shows fused images and the 
second column shows the error images. The error is computed 
as ( , ) ( , ) ( , )e r fI x y I x y I x y= − . The fused and error images 
by one level of decomposition using MSVD and wavelet 
fusion algorithms are shown in Figs. 4 and 5, respectively. 

Similarly the fused and error images by two levels of 
decomposition using MSVD and wavelet are shown in Figs. 
6 and 7, respectively.  It is observed that the fused images of 
both MSVD and wavelet are almost similar for these images. 
The reason could be because of taking the complementary 
pairs. One can see that the fused image preserves all useful 
information from the source images. The performance metrics 
for evaluating the image fusion algorithms are shown in Table 
1. The metrics showed in tables in bold font are better among 

Figure 3. reference and source images–data set1. (a) reference image Ir; (b) first source image I1; (c)second source image I2.

Figure 4. Fused and error image with one level (L=1) of 
decomposition using MsVd. Figure 5. Fused and error image with one level (L=1) of 

decomposition using wavelets.

Figure 6. Fused and error image with two levels (L=2) of 
decomposition using MsVd. Figure 7. Fused and error image with two levels (L=2) of 

decomposition using wavelets.
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others. From the tables it is observed that MSVD with higher 
level of decomposition performed well. Spectral information 
divergence (SID) shows that fusion wavelet with one level of 
decomposition gives good results and it is contradictory with 
other fusion quality evaluation metrics. The execution time of 
each algorithm is also shown in Table 1. Fusion with wavelet 
takes less time than MSVD since the former algorithm was 
developed using Matlab inbuilt functions. 

In second data set, forward looking infrared (FLIR) 
image (left) and low light television (LLTV) image (right) are 
considered for evaluation of the fusion algorithms (data set2)33 
and are shown in Fig. 8. Roads appear very clear in FLIR 

image since the roads are high thermal contrast. Trees and light 
spots appear in LLTV image. The fused images by MSVD 
(left) and wavelets (right) with one level of decomposition 
and second levels of decomposition are shown in Fig. 9 and 
Fig. 10 respectively. The fused image preserves all the useful 
information from the LLTV and FLIR images. Performance 
metrics are shown in Table 2. It is observed that fusion by 
MSVD shows better performance than wavelets.

6. conclusIon
A novel image fusion algorithm by MSVD has been 

presented and evaluated. The performance of this algorithm 

levels of algorithm
with  reference image without reference image execution 

time (s)rMse sId psnr sd sF

L=1
MSVD 10.1336 6.8 x 10-4 38.1072 52.4543 15.1229 1.141

wavelets 10.3674 0 38.0081 52.2394 14.2421 0.539

L=2
MSVD 8.5844 0.0399 38.8277 53.5597 18.0584 1.421

wavelets 8.8212 0.0269 38.7095 53.1383 17.2342 0.625

table 1. performance evaluation metrics–data set1.

Figure 8.  (a) FlIr and (b) lltV source images to be fused 
– data set 2. Figure 9. Fused images with one level (L=1) of decomposition 

using (a) MsVd and (b) wavelets.

Figure 10. Fused images with two levels (L=2) of decomposition 
using (a) MsVd and (b) wavelets.

table 2. performance evaluation metrics – data set2.

levels of 
decomposition algorithm

without reference image
sd sF

L=1
MSVD 48.10 16.21

wavelets 47.82 14.95

L=2
MSVD 49.15 18.52

wavelets 48.54 17.08

is compared with well known image fusion technique by 
wavelets. It is concluded that image fusion by MSVD perform 
almost similar to wavelets. It is computationally very simple 
and it could be well suited for real time applications. Moreover, 
MSVD does not have a fixed set of basis vectors like FFT, DCT 
and wavelet etc. and its basis vectors depend on the data set.
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