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ABSTRACT

In this paper an analysis of bulk service queuing system
of Bailey and Jaiswal is made considering time as a dis-
crete variable. Expressions for Average and Variance of
queue length and average waiting-time are obtained when the
input distribution is binomial and service-time is identically
and independently distributed. The results of Bailey and
Torben Meisling are shown as particular cases. These results
are applied to find the Mean and Variance of queue length
and mean waiting time in the special cases (¢) when the
service-time is constant and (#2) when the service-time follows
geometric distribution,

Ixitroduction

This paper deals with bulk service queuning system for which time is treated
as a discrete variable. Mean queue length and mean waiting time are derived
for the general case. As is expected, the results of Bailey! for continuous-time
system are obtained by a suitable limiting process. Also the expressions for the
generating function of queue length probabilities and average queue length of
Torben Meisling® are shown as a particular case, when the units are served singly.
. In a discrete-time system, the events can occur only at definite time points
called “time marks”. Let the time marks be regularly spaced with interval At
Tlustrations of such systems are found in electronic installations with internal
clocks which control all operations within the system.

The Queue System

The system under consideration consists of a service facility which takes for
service a batch of fixed number of s customers or the whole queue length, which-
ever is less. The units arrive at random at time marks and form single queue in
- order of arrival. The commencement and completion of service can occur only
at time marks. It is also assumed that (7) the arrival of a customer at any time

" mark is independent of the arrival of customer at any other time mark and the
probability of arrival is p and no arrival is ¢ such that p--¢ =1; (#) not more
than one customer can arrive at a particular time-mark and (i) the service
times are identically and independently distributed random variables.

From above it follows that the probability of the number of arrivals m
within a time period ¢ consisting of & time marks is the binomial probability
given by :

Am,k=<£>p"‘q’°—m o<m<k .o (1)
=0 : otherwise
317
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As the expected value of m, E(m)=kp, the mean rate of arrival A is given by

kp p ‘ : .
A: m—='§‘ .. .. .. .e (z)

Let C be probability of a service interval v containing % times At where %
is an integer.

Plo=kA]=0h, (k=012 .....), >C =1 .. (3
k=0
Then, E (v) =§k At Cp = At. 2]90,0 .. . 4)
k=0 k=0 '

Efv(w— At)l = Ek At (E—1) AL Cr = A8 Ek(k—l) Cr (B)
. k=o0 C k=0 o
Let the “traffic intensity’ measured in Erlangs be given by
p = >\.E’('v)=p§ ECL .. N .. (6)
. k=0 . .
An assumption p < s is made so that the system approaches statistieal
-equilibrium. ' : S

It can be noted here that this system approac}ies ‘to the continuous-time -

system discussed by Bailey! as p and At —>0 such 2 = Aa Qonstaht,

At

since the binomial input distribution tends to Poisson input distribution.

Technique of Analysis

An imbedded Markov Chain (Kendall3#) has been constructed to
characterise the system. For this, the queue length », used as the state variable,
is defined as the number of customers either waiting or being served and the
queue length is measured at the beginning of the service interval so that the
process becomes markovian, Let the row vector P=(P,, P, P,....) contain
the steady state probabilities P; of the system having different queue lengths
t{5=0,1,2..... ). Let T=(pj; ) be the infinite matrix of transition probabilities,
When the system is in the steady state, we must have

P=PT

Tn order to find the components p;; of T v}e introduce the probability by,
that m customers arrive during a service period. '

% ® ' .
bm=2Am,k Ck =§<z>pmqk"m.0k (m>=o0) .. (8)

k=e . k=0 '

0 )

(m < ¢)

B —]
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~Let a queue length ¢ > sat a service epoch become j j at the next service epoch.
During this service penod s customers are serviced from the queue length ¢

- and m customers arrive to join the quette. .~
Therefore j=i—s+m, and b, =F;, Pt +m”

ie. Py = biit, = ‘ dizs .. (9)

When the quéue lengthist<sat a service epoch, at the next service ‘epocﬂ the
queue length j will be only those who arrive during this service period. Therefore

pij = b i=s .. (10)

From this it can be seen that the first (s+1) rows of the transition matnx
is the same. So T is given by

— 0 1 2 3 4

0 by b by b b
1 by b by by b
2 o b by by by
3 by b, b by b
] bo b b b b
541 o by b by by
s+2 o o by Y b2

When s = 1, T is the same coneudered by Torben Melshng

Generating Function
From equation (7), Pjis given by L

‘ P] — b 21’; +bj___1 Pg.'_l —i—b]_z Pa_;.z —}— ...... + b Pg.H (11)

im0

Since the generating function of the probabilities'. P/’s is glven by

21’ zd , multiplying (11) by # and summing over j-—O to o

JHO
and simplifying,
a—1
}P; (2’-3 —z ) ‘
f=0 .o . (12)

' ( ENR ) >-—1

g(2) =

()=
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“Where ‘ . o '
@ o) ‘ ®. i ) . )
=> bnz”':: 2 2 Z)p’?q’“—’”.qk 7"
n=0 n=0 k=0
» k ) e .
= 26% 2 <£ ) (p2) q’““” =§C'k (pz+9* .. (13)
The numerator of g (2)in- (12) contams s unknown probablhtles P, Py, ....
P, ‘

Since g (2) 2 P, z" is absolutely convergent in [z] < litmust be regular inside
n=0 .

the unit circle [z| =1. Using Rouche’s ‘Theorein it can be shown that denominator -

- has (s-1) zeros inside the unit circle. Also thereis a zero on [z] =1.’As z=1is a

root of the numerator, we can determine P, P,,...... P._1such that the zeros

of the numerator and denominator coincide in this region. Let 2y, 2g; . .. .25—1
be the (s—1) zeros of the denominator inside the unit circle. Also let them be

simple for convenience. ‘
Since g(1)=1 and 2'(1)=p, taking the limit of (12) at z=1,

s—1 ) )

E P, (s—i)=18—p .. . .. oo (14)
Also

a—l1 - -

2 P; (Z. _-z’. =0 =123, ...... (s —1).. (15

=0

The s equatmns given by (14) and (18) determine the s nnknowns P,P,
.......... P,_1. It should be noted that if the denominator of (12) has multi-
ple zeros msule the unit circle, some modification to the above procedure as

given by Wishart® is necessary.

Since zeros inside the unit circle of the denominator of (12) coincide with
those of the numerator, (12) can be written as :

c (z—l) l(z-—zj )

(z" |k (2) )— 1
s—1

where C = 2 P;. 'The constant C can be determined by takisg the limit

™0

g(2) = (16) .
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. of (16) as z approaches unity from the left and equating the limit to unity, as

g(1)=1. C is given by

O= P ) S—.{P . . v oo (17)

11 (1--2)
- jesl

Therefore g(z) can be written as

g (2) = =1 > ' .. (18)

This expression of g(z) holds good even when all the 2;’s are not different. R
should be noted when s=1, the generating furiction (18) reduces to that obtain-
ed by Torben Meisling?,

(1—p)(z—1) h (2)

g(2) = Pp— Py . p<l .. (19)

Mean and Variance of Queue Length

Since the mean queue length E(n)can be obtained as the limit of the first
derivative of the generating function g(2) as z approaches unity from the left,
we have

v}
. Em= 2 aP,=g ) .. .. (20)
Nn=—0 '

Let the numerator and denominator of g(z) in (18) be denoted by ¢(2) and
# (2) respectively. As g(1) =1 and ¢ (1) and ¢ (1) vanish at 2 =1, taking the
limit of g (2) as 231, -

¢ (1)=4¢'(1) .. .. .. Lo (21)
Also diﬁ'érentiating g(2) with respect to z and taking the limit as 2>1 using (20)
I GBS
Differentiating ¢(z) and (2) twice and taking limit as 2 > 1 using the equations
2), (3), (4), (5), (6) and (13).
(1) =¢'(1)=s—p . .. (28)

s—1 -1

¢”(1)——2(s—p)2(l——z ) . . (24)

=K (9’&) & .o (22)

“and (1) = s(s — 1)-— 2sp -+ 2p? _AeE[v(u—A 0l .. .. (25)
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Substituting the values of ¥ (1), ¢"(1) and $"(1) from the equations (23),
(24) and (25) in (22) and simplifying, ' o .

2(1 —»p)

which is the same as the expression got by Torben Meisling? ‘when the units
are served singly under the same assumptions.

-t Nt N XE Ju(v — At)] — s(s —1)
E(%)_—jfl(l——z,() .»—l—p‘. 5(s—7p) , 4(26)
similarly, using the formula Var (n) =9¢"(1) +9'A) — )R,
' Var(%)=—i-§l-4—i-_L'—§+P(1—p)+)\2E(u (v— At)
, j=1(177%j ‘) »
| DeBue — AY) — (s — 1) [ RB (o(p — AY) —s(s —1) + 2(s — p)]
' A (s—pP
MBE [v(v — v — (s — .
+ o — £ £ _“Ziff).] s — 1) (s —2) )
When s=1, the first term of the equation (26) \:Ianishesvle,aving,
B =p+ 2L UL . (20)

" The result (26) and 26(a) have been applied to find the average and variance
of queue 1ength in particular cases, (i) when the service interval is fixed and
(44) when the service interval follows geometric distribution. :

Constant service time
When the service time v=v, a constant,

P [we=v, =k, Al =Cr=1 when k=F,

. = 0 otherwise .. (28)
. then E(v) = v B [olv — AY)] = v;? — Atwg .- .. (29)
‘U" : ‘

- and k(z)=(pz+ ¢) k, = (pz + ¢) At KR (30)

usi_ﬂg (30) the generating function of queue 1eng’cﬁ probabilities in (18) reduces
to

: o=l e—zj
s—pE—1) " \T %
@) = — z]> v .. 61

° £

Cemmta
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wherez; (j=1,2........ s—1) are the (s—1) zeros inside the unit cirole of
the denominator of (31). . :

The average queue length can now be got either from g(z) in (31) by differ-
entiation and taking limit as 221 or directly from (26) using the relation (29).

_s—-l L —1 Az[voz*At-Uo‘]*—'S(s——l)
Em%}fﬁl 2j)  +po+ 56 —p) (32)
s—1 2 :
Var(n) =— & g ot p(L—p) + ¥ (2 — v Al
[Az(vc:2 — Al vo) - S(S — 1)] [/\2("’02 — Ve At) - 8(8 -_ 1) -+ 2(6‘ —_— p)]
. + . 4(s—p)

A3y 3 — 3u 2, v.. AL2) — s(s — —

n B3 —3v 2% AL+ 2v,. Af?) —s(s — 1) (s — 2) (328)

3(s—vpr)

Noting that p =A"E (v) = A'v, and letting p and At > o such that

P is a constant A, (32) and (32a) reduce to -

At
s—1 —1 s (s— p)?
= I (1—z; L
E (n) j=l( zj)  + 5 —7p) (33)
S T2 S(s+20) + 6p(s—p)2—(s—p)
Var(n)—-—-jflzl(l—-—z]) + , 12 (s — p)2 - — (33a)
where 24, 29, «....... 2 o1 are the (s—1) zeros within the uﬁit circle of the

denominator of the corresponding generating function g(z) in the continuous
system. These are the same expressions of Bailey* for continuous time system.
Service-time follaws Geometric Distribution

Let ford <1, Cr=d*(1—d),k =0, vl, 2...... The generating function
in (18) will be

c—ne—n " (=2

w
=1 \1—z;

9(z) = i _ (34)
T=4a 2¢[1—d(pz-t+ @]—1
0 ’ 1—42
since h(z) = %;0 (1—d)db(pz+ q)* = 1——d(pzTg—)_ as | ‘3(2954—9) | <1

% The denominator of (34) is a polynomial of (s41) degree in 2z and as already
stated has (s—1) zeros inside the unit circle and also z=1is a root. Let 2, be the
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(s+1)% root outside the unit circle | z | =1. Therefore g(z),i:aﬁ be written as

81 )
e (z—1) = (z—=2j) v
_i=1 _ 4 . . .. (3D
g (Z) = VZ—"Z‘;' , ‘ ( )
(z——l) . (z——z )
3 =
Where ¢, is a constant choqen such that limit of g(z) when 2>1 from the left
is equal to unity

Therefore, -

e =1—2z,
" The generating function g(z) is given by v

2s—1
Zg—2

g (2=

which is similar to that of negative exponential serwee-tlme distribution got by
Bailey* since the geometric distribution tends to negative exponentlal as
At - 0 under suitable conditions.

It can be seen for geometric distribution

E[v(w— A)] = A d—ay = 2[EWP .. .. (38)
Usmg (6) and (38) the equation (26) in this case reduces to
ot Tl s —s+ 1)
E(")—jfl (—z;) - T2e—p (39)

where z ; ’s are the (s—1) roots inside the unit circles | z | =1 of the polynomial
of (s+1) degrees in the denominator of (34). Smce E(n) is also egual to gl(l),
differentiating (37) and putting z = 1, :

E (n) = and similarly Var (n) ot s (40)

1
—1 (2s—1)
where 7, is the one root of the denominator of (34)-outside the unit circle. -

In the case When s=1, the polynomial in the denominator of (34) reduces
to quadratic pd22 — 2z (1 — dg) 4 (1 — d) whose one root is =1 and the other

1—d
root is z = T which isequal to S >1.Hence E(n) = 1 _r and
P p o ‘ 1 1 T 1—p
P

Var (n) = 71:"1;)5 These are the results of Torben Meisling®.
Waiting -Time-Distribution

Since waiting-time distribution should invelve the service time distribution
and the state probabilities of different queue length, the Laplace Transform of
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waiting-time distribution W(a) given by Downton ®and Jaiswal 7 is written as

) —a . A, o
i—a.kA : -
where 8 (a) 2 Cre, and A(z) in (13)”86[_”9 (Pz'f”Q)J.
=0 ) VAN

The mean and variance of waiting-time w can be found by successive differ-

entiation of W (a) taking the limit as o = 0 and noting —A?;— =i

> Here, only the expression for mean waiting-time E (w) is given

v (v — - E(v
E(w) =20 g 4 ZRL 22\(2))]+N ©

using (2), this reduces to

B)=; [(Bm — B + ;{E [otv — 2] B }] )

1t can be easily seen, by taking the limit as A¢ > Osuch that é =Aa

constant, that (43) reduces to the same result as Bailey’sl,

For constant service-time using (29) and (32), the expected Waltmg-tlme
becomes

1 s—1 A2y 2 : s(s—17 1
B(w) = [E(w,)——g]xz[ 2 (1-z;) +_;’+ [v 2f§t.?f],,)s(s ]7\

Similarly from (42) using (38) and (39) it can be got when the service-time
follows geometric distribution,

=1 Tl s(@Zp—stl) 1

Bw=[ 20—+ 2@——-;>‘+— | x

j=1

(45a)

1 At 1 .
py— + ?A])-\ using (40).
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