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Navier-Stokes equations which described the unsteady flow of viscous incompressible ﬂuld 8
around a porous infinite circular cylinder oscillating harmonically with constant suction are inte-
grated using Laplace transform. Curves have been drawn of the steady state part of -the velocity
both for suction and without suction case and it is found that for each value of suction parameter.
at every instant there is a concentric circle.around the cylinder where there is no effect of suction,

8 situation which does not exist in the case of rotating cylinder. The ‘energy equation has also
been solved and the solutions are given for large and small values of time.

A nunber of problems of unsteady fluid flow round a rotating cyhnder with and
without suction have been considered earlier by various authors':2 under different boundary
conditions. The problem of fluid motion withir two concentric rotating cylinders has also
been consideredd. W. H. Schwarz* has studied the fluid motion due to the oscillations
of an infinite circular cylinder. The problem of fluid flow and heat transfer round an
oscillating porous cylinder is suggested in case of lubrication and coohng of oscllla.tlng
“mechanical devices and also in chemical engineering.

In this paper the problem of unsteady fluid motion and heat transfer in an incom- -
pressible fluid due to the oscillations of an infinite porous cylinder about its axis have been
studied. Tt is assumed that there is a constant suction at the surface of the oscillating
oylinder. Navier-Stokes equations describing the unsteady flow of a viscous incompres-
sible fluid when a porous infinite circular cylinder oscillates harmonically in it have been
solved using-Laplace transform. It is found that in the steady flow for each value of 2, the
non-dimensional angular velocity of the oscillating cylinder, there is a concentric circle
round the cylinder where there is no effect of suction, a situation which does not exist
in the case of a rotating cylinder with suction at its su.rfaee "The velocity distribution
curves in the fluid have been drawn for various values of 2 for the case when there is
suction on the surface and the cage without suction. Later the unsteady energy equation
(neglecting the dissipation term) is solved for the oscillating cylinder with suction. On
neglecting the dissipation term, the problem of heat transfer reduces to that of solution
of energy equation in a_ fluid outside a porous cylinder with sustion. The solution of this
equatlon has been obtained for small and large values of time.

HYDRODYNAMIC PROBLEM AND ITS SOLUTION
In cylindrical polar coordinates, let (v, g, % .) be the velocity components along
(r, 6,2) respectively, the axis of the cylinder coineidin g with z—axis. Since the motion
is rotationally symmetrw and two dimensional, the derivatives with respeot to 6 and z are
ideutically zero and w, = 0. The equation of continuity and momentum are
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Equa.tlon (1) givesu, = constant = —8 (say) where S(>O) is the suction parameter

‘ Substmxtmg thls value of u,in (2) and (3), we have
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~ Writing -:2 =2(m-1)in equat_ion' (5) we have ’ ~ '
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Now when the infinite hollow cylinder is made to oscﬂlate ha.rmonmally in th& fluid
at rest initially, the motion of the fluid- may be obtamed from (6) Wlth the followmg
boundary and initial conditions..
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The equatmns of motion and boundary « conchtlons become _ '
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Equations (11) with boundary condition (12) may be solved. by La.pla.ce transform
method. Taking the Laplace transform of (11), we obtain. . '
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This is a Bessel’s equatmn ‘a.nd 1ts solution is glven by
Tl 2) = Al (174 ) + BEo (17} ) a

where I, and K, are respectwely the modified Bessel function of first and second kmd
of order m. v

‘Condition (12) becomes
V,p) =
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where Cisa posmwe constant,

Now Km(p% ) has a branch point.at the origin. The contour of mtegramon is taken a8~
shown in Fig. 1. There are two simple poles losated at - €.

Now it follows from Fig.1 that
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The residues at the poles p = ;(: 12 are g1ven by , -
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- (20) may be combined to give S ’ ’ . R
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where we have used the relation
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In this equation if we put m— —1, we get the result for suctionless case as
obtained by Schwarzt. = ' I
- The graphs of the steady part of the angular velocity both for suetion and suctionless
cases have been drawn in Fig. 2 for @ = 0-25, 4-00 and 9-00. From these graphs, it is
found that at every instant there is a concentris circle for each 2 at which there is no
effect of suction and the velocity at that cirele in both the cases is the same.

The physical explanation for existence of such an instantaneous cirele for every value
of suction parameter, can possibly be searched out in the quasi-steady part
of the expression on the right hand side of equation (24). The suction
parameter (the normal velocity at the surface) interacts with the flow induced by
oscillation of the porous cylinder and gives rise to the sine term. Depending upou the suction
parameter, somstime during a complete oscillation this term becomes equal to the parti-
oular case of flow induced by periodic motion alone without any suotion. Obviously no

. such situation can be imagined in the case of continuously rotating bodies where no such

periodic term ocours in the solution.
THE HEAT TRANSFER PROBLEM

The energy equation giving the temperature distribution, neglecting the heat due to
friction is given as : ' :
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- The boundary cohditions

U, = — -;—g-; where S is & + ive constant
- | (26)

T o)=0 and T(t) =T, (27

Here p is the density, C, is the specific
heat at constant pressure and A is the oon-
« ductivity of the fluid. Putting the value of
Ma ot B ot u, given by (26) in (25), we get
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where A4 = o 0,

Taking Laplace transform, the equation
(28) and boundary conaitions (27) become

‘ , @ | B4 4T _p =
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¥ig. g—Velocity distribution for constant
QT = 7j4 and varying Q
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For srnall values of tlme, usmg ’ehe asymptotm expresswns of ﬂ] Bassei flmotlons in.
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o .. “zero initial temperature and constant
) surface temperature 7';. The numbers. on
ihe curves are the values of n,
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- 'Tempeutnte in:; the: zegmn bmmded
jirternally by a'eylinder’y = g. ‘Thenum-

bers on the eurves are the values of
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For large values of time using the techuique given by Carslaw & Jaegar5, we get
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which clearly satisfies the boundary conditions at (27).

The temperature distribution for r > a for various values of the dimensionless
parameter Atja? and for various values of suction parameter obtained by use of equation
(33) is depicted graphically in Fig. 3 and 4. It is clearfrom these figures that with
the increase of the suction parameter the temperature fall is steeper along the distance
from the surface of the sylinder, S : :
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