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! The paper considers the effect on the-dusty gas otherwise at rest at infinity due to uniform motion of .a sphere. The
dust particles are assumed to have small relaxation time. Using the potential solution of gas flow at large Reynold
number R, an equation for the concentration of dust near the sphere is derived and solved numerically. It is also
shown that particles do not collide with the sphere until the Stokes number o is greater than 1/12 if we assume the
gas flow unchanged by the presence of the dust particles.

Initerest in the problem of mechanics of systems with more than one phase has developed rapidly in
recent years. Situations which oceur frequently are concerned with motion of a liquid or gas which contains
a distribution of solid particles. Such situation occurs for example, in the movement of dust laden air,
in the problems of fluidization, in the use of dust in gas cooling systems to enhance heat transfer processes,
and in the process by which rain drops are formed by coalescence of small droplets which might be considered
as solid particles for the purpose of examining their movement prior to coalescence. ' '

Carrier!, Rudinger? and Marble® have done extensive work on the models of dusty gas flows and shock
waves in dusty gas. Later Saffman® formulated equations for small disturbance in plane parallel flow of
a dusty gas. Following his model Michael® and Michael & Norrey® studied the steady mot'on of a. dusty
gas past a fixed surface and arrived at approximate solutions. Here in this paper the model formulated by
Saffman? is employed to study the motion of a sphere in a dusty gas and exact solutions are obtained. The
dust is represented by a large number density N of small dust particles whose volume concentration is
small, but mass concentration is appreciable. It is assumed that the individual particles of dust are so small
that Stokes flow approximation to their motion relative to the gas, is appreciable, The equations of

- motion gives rise to two additional independent parameters due to the presence of dust, viz. f, the mass con-
centration of the dust and =, relaxation which is representative of the time scale on which velocity of the
dust adjusts itself to changes in neighbouring gas velocity. When r =0, this adjustment is instantaneous, and
we have a limiting case in which the dust moves with gas at each point. . The motion in this case is closely
related to flow of a clean gas. We consider here the flow of a dusty gas for small non-zero values of = by
a perturbation of the solution at = = 0. Here Reynold number is assumed to be large, and as a first step
towards the solution, the paper considers in detail the perturbation of the unseparated potential flow for
a sphere. The analysis shows that when a nonsingular perturbation of a potential flow is assumed, the con-
centration of dust particles becomes logarttmically infinite to the front stagnation point of the sphere.
We find also that dust particles cannot reach the sphere except at the front stagnation point; there being a
dust streamline emanating from the point which deliminates a thin dust free layer adjacert to the sphere

whose thickness is of the order ¢ a where o is Stokes number, 7UJo and U, the velocity of éphere and
a, itsradius. ) ,
' ) FORMULATIONS

* The equations governing the motion of dusty gas as given by Saffman? are :

-

3% - - - o — — - . .
p(—st—%-uAu)z—gradP+MA2u+KN(”_‘u) - L (1)
dive =0 , (2)
m('at +v.Av)==K(u—v) ST : . (3)
" — . - | .,
"aZZ 4+ div(N v) =0 ~ (4)
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- - ) :
where % and o are velocities of gas and dust particles. N is the number density of dust particles,
each of mass m. K is the Stokes coefficient of resistance, P> ps p, being the pressure, density and viscosity
of the gé,s. The time relaxation parameter 7 is given from (3) by r = % . When + > 0 equation (3)

S - >
shows that w —> v. Substituting for w — v in (1), from (3) we have

- ->
: > - - - - ‘
p(ﬂ<—}—u.du)=-——gradp—|—,u42u-—-Nm(ﬂ—|—v.A'v) (5)
at at ,
when 7 — 0 equation (5) becomes

-

2u - - 1 -
(1—}—f)(?t——+u.zlu)=—-—p—,gradp-|—v42u (6)

where the mass concentration of dust, f = - - and» = p/p . In this limiting case when we put

- >

% = vin (4) and using (2) we find that
—a—t +u . AN =0

which means that NV remains constant in the neighbourhood of any given dust or gas particle. The simples
case to take is one in which & is uniform and equal to N o in the incident flow in which case N = N o €very-
where. It then follows that f=Ff, a constant, in this limit. Equation (6), then represents flow of a clean
gas with uniform density p (1 4f,) and viscosity pu. The solution for dusty gas flow at Reynold number R
is then equivalent to the solution for a clean gas at the increased Reynold number R (1 + f,).

For the motion of a sphere with velocity U, the gas velocity changes on the length scale of the radius o
of the sphere, a perturbation on the solution for r = 0 can be obtained in terms of small dimensionless para-

meter ¢ = = Ufa. Forspherical dust particles of radius d and density py, condition p << 1 becomes

2
E_R(ﬂ)(i) <1
3 p a

Now consider the potential flow of liquid due to the motion of the Sphere in the limiting case when 7 = 0,

: - .
neglecting for the present viscous boundary layer and separation effects. For this solution 42 4 = 0 in (6)
and the effect of the dust is simply to scale up the pressure variations over the sphere by the factor (1 - Jo)

-
Let w, represent the unperturbed velocity of the dust and gas, where

-
Uy = grad ¢

U a3
P = WCOSH (7)

7, 8 being spherical polar coordinates from the centre of the sphere, with 6 = 0 as the down stream direc-
tion and U the velocity of sphere.
- > > > > s ‘ - :
In the perturbation let w = uy4-ul ; v = u, 4 ot represent gas and, dust velocities for a small non-zero
- > -

value of 7, where u'; v! represent small perturbation velocities of order . Also we suppose N = N,+ N1,
f=/fo+ fland p = p, 4 p! . Neglecting the internal effect of viscosity in the gas and taking only
the first order terms we have from (5) '
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- - > - - > > = —> — 1
uy - A ut + ul . Auo‘—|-f0{'v1 A ouy + ug Afvll Ay . duy=— —p—gradpl (8)
~ similarly the linearised form of (3) for the dust flow is -

- - > >

Uy Aduy=ut — ot ‘ 9)
Equation (4) to the first order becomes
. N :
fodivol £uy. 4f1=0 A (10)

- R
Eliminating o' from (9) and (10) we have

- - -
Uy Afl = fyrdivu, . 4y,
since : ' »
- > 2
vy . duy = grad ——
4 Y A
the above equation can be written as

-
2

LAft= fyrdt _ ()
Using (7) and Laplacian in sphencal pola.r coord,ma.tes we have |
uo Afl fo 172 7(300823 —;—xism2 0)

4 \ ’
the right hand, side being always positive, and an even fanction about the plane 6 = /25 the left hand

- aft . . . :
side being | v, | —as— ; which shows that f!increases monotonically along a streamline and the rate of

increase is symmetric about 8 = #/2 .

Writing in terms of # and 6, (11) becomes

af1 sin@ 3ft  9ferU&® . ‘g .
| R T L A LN
Solving this equation we ﬁnd that ‘
9fo7Ua® 1 26 5 .
fl= ——&%[ T 0050{3—{- 2 sin? 6 - —— 22 sint 0—|—T€-sm t‘)}—l——:—,’—Z—Sm“olog‘oa,n2 0/2]

B N ’ - (13)
Equa,tlon (12) was left unsolved by M1chae15 for the dusty gas flow past a fixed sphere. The stagnatlon
points for the motion of a sphere are given § == 0'and 0 ==. Thus f%, the concentration of dust particles as

the sphere moves at stagnation points, is given by

f1=—2—7—£°;—0:f1=0at0=w[2
In the dimensionless form the unperturbed streamlines are giveﬁ by ,
x R r=csin?0 o (14)
and (11) canbe written as
%o 2/ =for 4 320:'
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1

where aa]; represents the rate of change of f* with length along a streamline, Using (14) to eliminate 6 we
. . af af . s 2af?
may deduqe the followung expressions for v and FY the streamline K, whgre f= of T
2r . r\ '
S G ) of _c%_(?’"‘s‘)- (15)

ar ==+ B(1—r/3)F ° 20 T 2 ,.42_

In the expression for’ % the —vesignis taken for 6 = = to 0 = #/2 and + ve sign from 6 — wf2t00=0.
SMALL VALUE’S OF f
If f, is small, is it follows from (10) that f* is small of the second order and to the first order (8) tells ug

— ;
that ul =p' =0 andequation(9) gives -

'01 ='—T(u0.Au0)

8o that
' > > >
V=g + o ,
e r v ’
= grad ’Lc?—?(grad?)z} o

‘ —>
Equation (16) shows that v remains a potential field in this case with potential

cosf o ‘ sinZ 6 |
| : $= e | Tamg (oo s 20)] 9
The equation for dust streamlines is given by ) ' .
S P R
— 2
dr cos 0 | (cos 0+ 1 )
rde sin 6 3o )

—3 + - (sin @ cos 6)
It is interesting to observe that when dust particles are clean that is when o =0, its streamlines coincide
with those of fluid particles. It is interesting to trace the divergence of the gas particles from the path
given by (14). Inorderto do so we write the equation of the streamline in the form ‘
. in2 @ = N ) -
4 S (18)

7

where ¢ is a small change in ¢ of order o , representing the displacement of the particles at an angle 6 ; we
then have o ' )
’ de sin @ dr 2sin 6 cos 6

="/ detT s : S

Fliminating " from (17) and (19) we have
€ 76

de 6o [ cos?2d sin? 6 .
. 16 — % 9 -+ 1 sin 6
This shows that dust path lines coincide with gas path line at a far away distance from the sphere. Sinceat

(20)

6 =0, we have % =0, it follows that path line of dust and gas particles coincide along the direction

sin2 §

6 =0. Integrating (20) along the streamline r= , we have
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DUST SEPARATION STREAMLINE

- Ruling out the case in which the sphere acts as a steady source of dust, we must conclude that there
a separating streamline for the dust which starts at the first stagnation point. Inthe first approximation
E,she position of this separation line will be given by the equation

- >

Y0 (22)

Assuming f,, to be small and if we write 7 — @ -I- o a 8(6), as the equation for separation line, we have to the
first order

5 (6) = 1 ¢ 2 cos® 0 2 cos® 0 cos? 0 1 ’ 2

)= 3a & ginb @  sind @ ST 5% S 7. |7 2smt0 cos 8 —cos” 0 —
3

= OB el 000 (23)

CRITICAL VALUE OF o

Although the main discussion of this paper is based on small values of o, it is worthwhile to digress
a little in order to make note of the critical value of o at which particles begin to collide with the sphere. This
can be done on the assumption that the gas velocity is unchanged by the dust and that head-on collisions
with sphere by the particles on the upstream axis will be first to occur.

The equation of motion for a particle on this axis in dimensionless form is

) Ere (24)

dir s o

We have to solve this equation with boundary condition v = 0 at r = a. Let us investigate the
behaviour of solution of (22) at t"e Ist stagnation point 7 = 1. Writingr = 1 + hwhere /i is small (22), becomes

(Eked v— (1 —3h)
A ) J (25)

This may be written in parametric form with parameter proportional to the time

dv

dh

R
Thus v and % have the form et
where MN4Q+430=0

when o < 1/12 the roots A; and A, are real and —ve and the time taken for particles to come to stagna-
tion point approaches infinitely like log  as & — 0. When ¢ > 1/12 we find », non-zero at - = 0 and
the particles collide with the sphere in a finite time. Thisresult agrees with that of Michael®.
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