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The steady laminar source flow between two infinite parallel porous discs rotating with equal speed in the same
sense about a common axis has been investigated. The solution has been obtained by a double series expansion

method. The effect of unequal porosity has been shown on radial and azimuthal velocity components and on
radial shear stress. -

Laminar source flow between two parallel discs rotating at the same speed has been investigated by
Breitner & Pohlhausen!, and by Kreith & Peube?3. The latter obtained the solution by a - series
expansion method in powers of the radius vector. The solution is valid at a distance far away from the centre
so that the entry effects are negligible. Pelech & Shapiro* obtained an approximate first order solution
for one disc rotating and the other stationary asaby-product of an investigation of the deflection of a
rotating magnetic recording device. Kreith & Viviand® investigated the laminar flow between two parallel
coaxial discs rotating atv different velocities, with a source at the centre. They solved the Navier-Stokes
equations by double series expansion about a known solution at large radial distance, and obtained the
velocity and pressure distributions. Rajvanshi® studied the laminar radial flow of second order fluid
between two infinite parallel discs, one rotating and the other at rest, by adopting the method of Kreith
& Peube. ‘ ~ . ‘

Flow between porous boundaries is of practical as well as theoretical interest. Berman? studied the
effect of porosity on two-dimensional flow in a channel. Elkouh8 discussed the laminar source flow between
parallel stationary porous discs, with equal suction or injection at the boundaries. The solution is in the
form of a perturbation to the creeping flow solution. He obtained expressions for the velocity, pressure and.
shear stress and compared them with the corresponding results on the assumption of creeping flow. Khan?®
gave a solution for laminar source flow between two parallel coaxial porous discs rotating with same
speed in the same sense. He has superposed, injection at one disc and an equal suction on the other.

In the present study, steady laminar source flow of an incompressible viscous fluid between two rotat-
ing infinite porous dises with different permeability has been considered. The two discs have been taken
rotating in the same sense with equal speed about a common axis. The double series expansion method
similar o that of Kreith & Viviand® has been adopted. The effect of unequal suction and injection has
been investigated on the flow variables. The eff:ct of porosity on radial and azimuthal velocity components
as also on radial shear stress has been exhibited graphically. It is found that in the central region, the radial
velocity component is greater but the azimuthal velocity component is smaller in case of equal injection at
both dises than those in case of equal suction. ‘

EQUATIONS OF MOTION
In this analysis the common axis of rotation of the discs has been chosen as the z-axis, the-origin being
midway between them. The equations of motion in cylindrical polar coordinates (7, g, z ) for steady axi-
symmetric flow are
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and the eq}la(tioh‘ of continuity is - , '
— — (rw) = 0. -
. NS v 3) + 3 (‘ i e (2)
The distance between the discs has been taken as 22. Both the dises have been assumed rotating with the
same angular velocity  in the same'sense.” The discs have been taken to be uniformly porous; the constant

velocity of suction at the upper disc being w, and that of injection at the lower ;. The boundary conditions
‘are z ' , o g
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where @ is the source strength. R
‘The following non-dimensional variables have b“eeﬁ;introduqéd': SR ' }
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where B’ = is the Reynolds number corresponding to rotation'and Re = Q[(4 = o3 w) is the
S v e ‘ Jve e L

Reynolds number correspondilig to the source flow.

The equation of ‘ continuity suggests the use of the stream function - ¥, defined by
o I R L | |
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- Following Kreith & Peube? , series expansions in poweré of & havé b'e;ari assumed Tor ¥, » and p. Consider- -
* ing the radial symmetry, only even powers of » have been taken in series for ¥ and p, and only odd
powers in the seriesfor v as follows : = . T - :

g
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v where g and h are functions of 2 only, : Cr e
The solution is expected to be valid for sma,ll values of Rv* b ( R /r”) The series a,ssumed for ¥ together '
w1th (8) gives _ R R R P '
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| where prime denotes differentiation with respect to 2. Fron (7),(9) and (10), the bOﬁndary conditions in
terms of the functions f, g and s are : ‘ o ‘ Sl
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It is later found convenieat’ t6 assume fo ( 1) =1, do tha.t » ” R
fol=h=1. = R R o : (12)
Su’bstltutmg for u, o, wand P from (9) and (10) in the equa,tlons of motlon (6), and equating -

co>fficients of equal powers of », an infinite set of system of coupled ordmary differential equa,tlons is
obtained. The first four systems consndered in this study are as follows : :
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System IV ; » |
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SOLUTION OF EQUATIONS ‘

The system of differential equations obtained above have been solved by assuming series expansions for

f, g and h in powers of R. Keeping in view the negative powers of r already occuring in the coefficients

-

and the fact that R itself has to be small to avoid boundary layer effects, terms containing powers of B
upto two have been retained in the solution of first and second systems, and upto one in the solution of the
third system. : : ' :

Systém I

* We note from third Qquatioh of (13) that h_,isa 'constant.ﬂLétus assume .
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From (11) and (17) the modified boundary conditions are
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First three equations of (13), (17) and (18) give -
‘f_1,o~= = — 0.5 (w, - wy) — (w; —wg) (0.752—0,252%), (19)
‘lf—lv.l = T%O_ (wlf—‘wz)_[(wl-—‘wz) (0.8482 2 —1,7411 28 + 0.9375 25 —\0.0446 z?) +
- (1, + ) (3.125— 6,250 22 4- 8.126 2%) ] ’ (20).
for2 = _f(l)_O- (wl——kwa) [1.07\14 z — 2,8b71 23 + 2.5006 25 — 0.‘7143 7+ (W — wy?) .
| . (00577 + 0,1116 2% — 0,4130 2* - 0.2604 2* — 0.0167 2% + (10, + wp)® .
. (0.31252—0.62602% + 0.312652°) + (w; — wy)? (0.0169 2 +0,o1})7 B —
;0.0759 28 4 0.0664 27 — 0.0074 2° 4 0,000 2™) ] ’ @1)
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g—be -4 MR e
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Last equation qf (13) and (19) to (21) give b upto second degree terms in R in the. form

R
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System 11
Using the above technique, we obtain fy, g and &g upto second degree terms in R -as

R .
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go = — 0.25 R(b—62% +24) +<TI§—6 [(wl — wy) (— 46.9420 4 43.8393 23 + 4,7768 2 —

‘ — 1.8750 28 - 0.2009 26) — (w; + ;) (28-3333 2 — 33,3333 2° +5z5)] NG
by = — 340.385714 R (wy — wy) — B? [ 1.942857 4+ 0.5 (wy - wg)? +0.169245 o
| o (wy — wz)z] . , o ‘ (31)
| System II1 | |
In a similar manner f;, g and b, upto first degree term in R are \
fi = 1§0 (5.3671 2 — 11.7857 2 -+ 7.5000 S 1.0T1477), 1 (32)
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‘In. this' system ;onlywerms»mntaiaing; R have
been ‘retained. For this we agsume

Fz;ro + pbWers of B, = (35)

fve" | ‘f2‘=l(f.2, 0+r'

and so on,

The boundary ' conditions are
Ja o =Fyo =0, f9 = Fly, 0 =0,
gn0 =G0 =0catz=+41. (36

B ‘ ‘ . Hence (16), (35). and (36) give . :
Fig. 1—u* against z, (B=0:1, Re*=2), =~ o fz =y = kg = 0. ' \ (37

| VE;‘LOCITY’_IA),I"STRIBUTION' «
The - non-dimensional radial velocity is given by (10), in which the functions fos fofiand f, are
given by (19), (20), (21')1 (29), (32) and (37). If <> be the average radial velocity, we have -

‘ 2 J° r 4 1 2 ‘

_,.-] ) L - . o

' ’l ) ’ BRY u .
* —_————-
Let u* be deﬁneﬂ. as =S ’Then

ot _ OBS £ R* S LR LR
= T B* 0.9 (0 —wy) : (38)

- where Re* = (Re/r?) is the reduced Reynolds number” for the source flow. .

quves showing variétion of u* against z have been plotted in Fig. 1 for R==0"1 and Re*=2 in four cases:

(®) w =5, wy= ;{5, Be., equal suction at both the discs,
(1) wy = —5,w, =5, i.e., ‘equal injection at both the discs, - ,
(499) wy = w, = 10, d.e., 'Suction at one disc and equal injection at the other, and

() = w; = 10, wy = 0, 1.e., suction at one disc only, the other being non-porous.

‘The effect of injection is seen to decrease the magnitude of velocity gradient near the disc and

‘to increase the maximum velocity in the central region. Suction has opposite effect. This observation agrees

with that of Elkouh8 for the particular case of stationary dises with equal suction or injection. The layer
of maximum radial velocity is seen pulled towards the disc with suction and pushed away from the disc with

injection. It may be noted that effects of source and injection are complementary, in so far as both resultin

increased outflow inradial direction. On the other hand, a strong suction may necessitate a back flow towards
the axis for its sustenance. : . :

The non-dimensional azimuthal velocity component v is given by (9),'in which values of the functions
9—1 Yoo 91 and g, are now known. Using the values of v = # on the dises, we define :

7 -

) 'Udiﬁc
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v vv,bS'ystem v A

- = g—1 +BRe* gy L Be* gy L Re¥dg, 1 (39
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PFig. 3—r* against Re*, (R=0-1)

Fig. 2-—v* against 2, (B=0-1, Re*=2),

Variation of v* against 2 have been shown in Fig. 2 for the same particular cases as considered above.
The azimuthal velocity in the central region is found to be less than that on the discs incase of injection
at both the discs, but slightly more in case of suction. The layer of maximum deviation in the azimuthal
velocity (i.¢., the layer of greatest or the least velocity as the case may be) is seen pu}led towards the
disc with suction and pushed away from the disc with injection. The case of suction at one dise
and. equal injection at the other is interesting, in which azimuthal velocity even near the disc with suction
is less than that on the disc itself. In the absence of source, and w; = w,, We note from (39) that the fluid
rotates as a solid mass with v* = 1 everywhere. Further, we have already observed that the effect of source
is similar to that of injection.  Therefore, in the absence of the source v* falls short of the corresponding
values in its presence. The layer in which the deviation from unity is maximum (i.e., the layer of minimum
velocity) is.pulled niearer the disc with suction in this case too. ’

' The velocity component in the axial direction may be abtained by substituting the values of f_i, f; and

f» in the expression for w in (10). \ / :
Skin Friction 7 \

.The radial shear stress in the non-dimensional form is

_ o v
Trz = az+ or

Since = > 8:) ,at 2 = = 1,it can be approximated by —- only. Then

32 2
- ]' . ” | R ” ‘R 2 \”' R@s " - ) >, ’ ) “ v )
re = o [k e [l e S S (40)
A r 7 r T .
in which f1, fo f1 and f, are known. We define : .
o 'l‘f”-l 4 Rexf"o+ Rex2 f"y + Rg*sf”z_{f‘ e ‘ (41) \

r 2

and denote its value at z=1 by =,*. Fig. 3 shows variation of 7 € )
but different values ofw; and w,. All curves slope downwards, showing that slopes of radial velocity profiles
at the discs decrease with an increase in source strength. In case suction at the disc 2=1is not accompanied
by equal or greater injection at the other, =,* is positive for smaller values of Ee*. This shows that as z de-
creases from 1, w decreades from zero, implying a back flow towards the axis. : ‘

* against Re* for a fixed value of B=0-1

% i
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The non-dimensional transverse shearing stress for the axisymmetric case is'

: M R , R2 ' RS
TS T+ T+ s+

N

[/ (42)

yd

where g, g;, g1 and g, are  known.

Pressure Drop

Substituting from (25) to (28), (31), (34) and (37) in (9), the exp‘iession for p may be obtained, which is
found undetermined to the extent of a constant of integration. Pressure drop in the radial direction is.

obtained by comparing magnitudes of pressure at two points in the same z-plane. If p (ry, 2) be the pressure
at a particular point, the pressure drop :

P (1 2) — p (1, 2) = (rg? — 1) [ 0.375(w;, — wy) + B {0.5 — 0.096429 (107 — 1;)? } B2 (10— wy)

o {0.269643 +0.146875 (10; +-w,)? 4 0001751 (20 — wz)s} ] + Re In ( 7’-) [3 —0:385714 R -
(g —wy) - Rﬂ'{ 1942857 + 0.5 (w, + w,)2 0.169245 Wl ——,:’wz')z} J 4+ 0.771429 Re?

V. R(r_z___ro__2). P - / & ‘:% | ) ~; ‘ . . . s . c v N '.’7 (43)
It may be noted that the radial pressure drop is independent of the axial coordinate of the points.

- DISCUSSION

In the above analysis, the Reynolds number corresponding t6 rotation (R = a2 o/v) has been assumed
small to eliminate boundary layer effects. By assigning different values to w, and w,, various cases of equal
or unequal suction or injection can be deduced. The effect of source is to cause an increased outflow of fluid
in.the radial direction, which is similar to that of injection at the boundarjes. Beth these cause an increase
in the radial velocity component and a decrease in the azimuthal velocity component, and a decrease in the
slopes of both radial and azimuthal velocity profiles near the dises. The effect of suction is opposite. Suction
pulls nearer the layer of maximum deviation in velocity from its value on the boundary, injection pushes
itaway. If the sourceis not sufficiently strong to match the suction, back flow in the radial

direction towards the axis may occur. The radial pressure drop depends on the distance of the points from
the axis, and not on the distance from the discs -

|
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