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Recently, Green & Adkins examined finite flexure of an aelotropic cuboid and, indicated the conditions under
which the problem may be regarded as solved. In this paper, the problem of bending of an aelotropic circular
" blockinto an ellipsoidal shell has been examined on the lines of Green & Adkins and a solution has been obtained in
terms of a completely general strain evergy function for both compressible and incompressible materials. The
problem of bending of a circular block into a spherical shell has been obtained as a particular case. .

The theory of finite deformation has received fresh impetus when Rivlin achieved one of the major
advances of this century by obtaining a number of exact solutions, specially for incompressible bodies,
in terms of an arbitrary strain energy’ function. References to various developments are found in surveys
by Rivlinl, Truesdell~4, Green & Zerna®, Green & Adkins® and Eringen”S. Though the theory has been
applied to various types of problems, very few attempts®13 have been made to solve the problem of
circular blocks bent into various shells. ) ' : : :

Recently Green & Adkins! examined the finite flexure of an.aelotropic cuboid and indicated the
conditions under which the problem may be regarded as solved in terms of a general strain energy function.
In this paper, an attempt has been made, on the lines of Green & Adkins' to solve the problem of bending
of a circular block into an ellipsoidal shell. The solution has been obtained in terms of a completely general

_strain energy function for both compressible and incompressible ‘materials. The problem of bending of a
" eireular block into a spherical shell has been obtained as a particular case.

NOTATION AND FORMULAE

We adopt the notation and formulae of Green & Adkins'. The strain energy W of a homogeneous
aelotropic body is expressed as a polynomial "

, W =W (ej) : _ | (1)
in the components of strain ¢;;. The stress tensor 7%J for a compressible body is given by .
| y 1 (W | aW \ ag 3¢
Tl J = ( ) . =
2\/13 3€rs 3, gz 8908 P (2)
where o R e N .
Ig‘%v|26,3+\3”| S . ’ (3)

For )an iilcompressi:l‘yl‘e_ ‘l:)ody; I3 =1, and

g L (W W\ 3¢ ag T
A T'] = —— ( ) ¢ sz .
. . 2 dbrs ae."  ' er g + r o (4)
The equations of equilibrium, in the absence of body forces, are ' ‘
f Tiifj = 0. | )

. BENDING OF AN AEL(’)TROPIC« COMPRESSIBLE CIRCULAR BLOCK
; "INTO AN ELLIPSOIDAL SHELL

Suppose that a circular block in the undeformed state is bounded by the planes % = q,, @, = q,
(a3 > a,) and the cylinder z,2 ++ z,2 = o2, The block is bent about the zg-axXis symmetrically into part of
an ellipsoidal shell whose inner and outer boundaries are the ellipsoides of revolution obtained: by revolv-
ing the confocal ellipses o L : -
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%y = ¢ cosh £ cos 1, x, = ¢ sinh £ sin, 9, § = &, ¢ = 1, 2 (6)

about the z,-axis and the edge 7 = -«. Let the yi-axes coincide with the z-axes, and the curvilinear
- coordinates @ in the deformed state be a system of orthogonal curvilinear coordinates (£, 9, ¢), where @
is the angle between y, y5 plane and the plane through:-the point in space and the y,-axis, Then

‘9, = c sinh £ sin 9 cos @, Y, = csinh ¢ sin 7 sin ¢, Y3 = ¢ cosh ¢ cos 7. M

Since the deformation is symmetric abeut the zg-axis, we see that .

- (¢) the planes z; = constant in'the‘undeformed state become the ellipsoidal surfaces ¢ = cons-
tant in the deformed state; -

. (44) the surfaces z,% - #,2 = constant in the undeformed state become the surfaces n = constant
in the deformed state; ’ ;

(66i) tan—t -2 —.q.
Z,

Thus the deformation is given by

f=f@), a=F@prad, e = tart 2 (8
s :
The strain components are given by
o 2 2 ginh? £ sin? :
2¢,, = 4x,2 F'2 ¢2 (cosh? £ — cos? 9) + % Aol § ity , ]

@+ 2
%2 2 sinh? £gin?y
(2,2 +ag?)?

ey = 42,2 "2 2 Ec;)sh'z § —cos? ) + -

. e - : +(9).
265y = f'2 (m3) c* (cosh? ¢ —cos?g) —1, RN :
. A . gm, *a'nh? £ sin? g
e =42,7 F'2 2 (cosh?§ —cos? ) — 2 2(9012, T
€3 = 63 = 0 ’ ’ J
The stress tensor (2) has components .
mo S, | | )
Vi \ 3¢5 - \ :
4F2 W oW ow aw
e 8 (24 )
\/Ia 1 :611 + 2/, 3823 172 . 6921 + 3631 .
\ 1 [ P4 oW . (aW oW )} (10)
1'88= xz _|__x2_____w- i, e D G € - ¥
- (”12‘"‘ 2?) vy i ? 0o, ' aen 172 9ey2 + Seq1
"= T a = o)+ o) (G + )
= Y log g (2L — 27 e —a?) |
(@® + 2% v/ Is{ "% (6’622 de11 T O3z + ce2 )
1"12 = TIS = 0, | ‘ J
where ~ I, = 46§72 F® sinh? £ sin® 7 (cosh? ¢ — cos? )3 (11)

‘The metric tensor for the strained state of the body is given by

, ¢ (cosh? ¢ — cos? n) 0 0
Gy = [ 0 ¢ (cosh? § — cos? 1) 0 ] £12)
0 0 ¢ sinh? €'sin? §
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Ram RA0 & LARSHMINARAYANA : Bending of Aelotropic Blocks
The equations of equilibrium (5) in this case reduce to
- f® aW ‘cosh.& sinh £

a1 / |
FHVL ey VPO T ey T

Tl o T e Tma (B + B )

+ VI " _5;1; o2 \ s cosh? § — cos®
1 oW LW (3W aW)} { sinhfcoshfsin?ﬂ}\a ‘
S FR LAY T LAY RN §-i S —_—ee B T T @,
* (-’”12-1-“;22)’1/13{ ? 331‘1—!— Yoy 7 2 Je1g + 9¢1/) L oosh?{ — cos? n)
322 a3 + J_"i (aW ( sin -7 cos 9 )-l- . . .
am am  A/I3 \ de) \cosh® § —cos? B .
L W g W (O 4 SV [ tn |
+ '\/13 {wl 3011 + 4”2 6922 +m1w2 3312 + a@,l) : m + COth §}+ :b
1 aw 14 aw aWw
2.2 @ 22 X —_— —_— .
+ (% + 2% \/Ia{ ? ey + b gens 1 2(6813 + 6621)}

_ sinh?£sinycosy _o
) ) cosh? £ —cos2g [’

aTs  aT® o 14 oW ‘
2 @ LA, 2__ p2
%0 + an T (w2 4 @2?) 1/13{ 717 (3322 3911) T (x1 xz) )

(4 2} {2 )

€12 ’ 863 cosh? f — Cos2 k]

J

(13)

These equations of equilibrium, as:they stand, do not seem to admit a solution. However,
~ a selution can be obtained if we assume 9 to be so small213 that sin 5 .can be replaced by 7 and

7 = F(®2 + %,2) = K(2,* + 25%)}. Physically this implies that the maximum value of 7, which is
approximately equal to the ratio of the radius of the circular block in the deformed state to the semi-axis
of the ellipsoidal shell in the direction of the ys-axis, measured in radians, is a small quantity.
This in turn implies that the deformed shell is shallow, i.e. the deflection is small. Then the equations

corresponding to (8) to (12) reduce to

CE=f(%y), 7 = K (22 212 g5 - 70089 _ 7nsing
£ =f(%), n (@2 + 22)12 , 1, ——K‘ , %o T

2811=2822=K2028i11h2§—-1,~\

%ess = f' tsinh? £ — 1,
€19 =63 =¢6€3="0, f
m . f? (ﬂ’_:)., T22=jxf_(ﬂ), 1
\Tl VI \ ses I3\ gey | ; .
Ko (aW) s a1
— L), TR=TB=7T8=0,
124/ \ 3¢y J
where\
I, = K5 f'2 sinh® .
: o sinh® ¢ 0 o
Gy = 0 ¢ sinh? § ‘ 0 »
0 - ) ¢ n? sinh? ¢

(14)

(15)

(16)

an

(18)
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Then the second and the tjm-d equatlons of (13) are satlsﬁed 1dent1(:ally The ﬁrst equatlon reduces to

f 2 ¢® sinh? £ 2 ( ? ) " g2 mh‘a ( ) S
g "633 f ?' § 633’ + ; ; :H - E “

«5 ¢ : ,
3 +f'2 czsmhﬁcoshg( W)k —2K232mnh,£ Goshf ( CLUA (19) -
i - J€ga " : : ‘ i Ce.ll . :
Now . = = ‘ el R ' ‘
B :ajt_’ - "W 9611 *aW ' 3322 ‘ ?W Doas “ Ry
R oeyy o€ pess 26 3(’33 A
! = f" % sinh? ¢ ( ) +f’2’?32 smh§ cosh £ (6W'”\
+ 2K? 02 smh g cosh 5( W) oo e e
: 8311 S o
From (19) a,nd (20) we get ST b SR BT R
! MW TR e e (WAL |
Lo e T {ormame e (50) 1 e
Whiqh on ipﬁegratic;nflgives . B o . BSE = '

; T R “>a€33r ~ e ey

-~

‘where Wy isaceonstant, - L on ol
i : e ST

- . 'This gives

\ T B T o 'W‘+‘Waw,f;;;:f L (@)
g - . i . . czsmhgf (5 ) SRR i R e -

\Ger )

. g

The physmal componeni:s of stress in view of (16) to (18) aTe glven by

o= 'm \/(W'}‘Wo) oW }

et i Vi A (R I

0 3vas ' :
'012—023—‘713—0 ) .ﬂ@ J
: BOUNDARY CONDITIO‘NS ,
B A 3
/ If —R;, o = 1, 2, are the apphed normal tra.ctlons on the mner\ and- outer surfaces of
shell, we have ) EES o e
Bl g

oy = -—R; when § = fﬂ'a "; = l’ 2’\

‘which on ubstitution from (24)kgive

{aW \ Y P
KA smh4 & { W (&) + } (,jesa )g 53 =Rk, ”‘_,T. .,13,2," .

* Solving these we get the values of the constants W, and K

=14
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On the edge 7 = o the dlsti'ibutlon of tractions per unit arc between ¢ and o + do give rise to
a force F and a couple M, about the ongm gwen by

£s - £ :
F,= oc,f o ¢2 sinh? ¢ d ¢ M1 = a f 099 ¢ sinh? ¢ (ccosh ¢)d ¢. (26)
& & " |

Substituting (24) in these equations we get : : ‘ -

e fowe (1) V0o
f \ \ ‘

1

1= afczsmhz £ (c cosh £) (ae )\/(‘gf")/(w;wo)d:g.

&

.,
Y

27

These results rest on the assumption that the strain energy function W exists, When it is speci-

| fied, the integrals in (27) can be evaluated. Then by writing £ = £, - %, where % is small, the results
for thm shells (13) can be derived,

Thus to bend an aelotropic circular block into part of an ellipsoidal shell, we requu‘e a resultant

force F; and a couple M, on the edge, together with prescnbed normal tractions B, and Rz on the
inner and outer: surfaces respectively. :

Particular case I—Bending of an aelotropw compressible ciroular block into o spherical shell.

Ifccosh ¢ = ¢sinh'¢ in (6) we get the case of a ciroular block bent into a sphencal shell, so that
§>w,c>0,andecosh ¢, csinh ¢ >7, (28)

and consequently the orthogonal curvilinear coordinates ( £, 1, o) are replaced by the spherical polar coor-
dinates (r, 8, ¢). Then the equations corresponding to (7), (8) (16), (17), (21), (24) and (27) become

Y, =7rsinfco3p,ys =rsinbsing,y, =rcosd, (29)(
r=f(%),0 =K (€% + 2,912, » = tan? ?_,’/ o (30)
Ly W 1
U = (f'2/+/I.)
WEVZ A e
T = (BH1) : o
N o (31)
T8 = (K?n%/I) aW |
Iy
e — T8~ 18— ;J ‘ _ )
I, = RaAf, - | (32)
Mg () -
o ar (f s/ ’ ' ' (33
IwWw+w W
\/1 T Sy
O = , K r2 :

(34

o '__aW oW '
022-,_%3—3_3;1 Beas/{W TH_Wo}.
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9

Ty

Fome [ (a_W_) \/( a%) /{W @ +Wo} ® n{ i .
L "ra , et e ) o (35)‘
4M1 ~ af (:Z) \/(aess)/{w “‘"+Wol dr

x Pamcular case I1 -Bendmg of an aelotropwmcompresszblg mm*ula,n block mm an elhpsmdab shell

In this case Is = 1 Then from (17) we have ,

Aaf 1 o - 36
| | lmy T RSSRES 8
- which on integration . gives - : SR o
. C coshd f . -
B

where B is an arbltrary constant.

As the mternal and the extemal boundarres of the e]hpsqldal she]l are gwen by §, = f. (&= 1 2) respec- o
' tively which were initially ‘the planes z, = a; and 7, = ag, (37) ‘gives ; ’

Ja1=K2z;3{(08h§—1“ cosh{-‘ }-I—B "  - | . v
. : P :
o | & | . (38)
ag;_—K33{008;1 &2 ccshfgl—}—lf'l . ‘
s
~ Solving thege .we get}t]xe'vaIuesnf the spnstants K and: B
Then the components of the stress tensor (4) are gwen by
o o g W P
™= et waE | | ,‘
) ’ oW | p ' . o
22— K2 : . oo 39
r K- 9% = ¢2sinh?2g -’ ‘ kf - . (39)
g . i
. K2 W p |
R = N ey + 72 c?sinh® £ ’ JI
The equatlons of ethbnum in this case give
o9 + c2sinh? ¢ ﬁ\(f'zﬂ) +4f’2s1nh gcoshg(aw)——<‘
2E 13 (€33 E N
| 202 E1AY o : ‘ ' )
—2 K2¢ s1nh§ cosh. £ =0, S (40
'3611 e, . - 7
L
| an e T
The equations (41) show that p is a function of £ only. - R '
The equation (40) in view of (20) and (36) gives
‘ W w3 RO LA \ Y

o 3 CE 1S K4c4smh4§ esm )
g 1 o
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This on integrafi&; givés | ‘ B 7 , . )
- W AW 1w o
From (36); (39) and (42), we get the physical components of stress as .
=W+, I :
' C o AW ‘
ozp =0z =W + Wo+ K2c?sinh* § — — ‘
. S ' 3611_‘, : } . (48)
. _ 1 \aW . " N
KA sinbd ¢ ey '
. ]

BOUNDARY CONDITIONS

If the inner boundary of the shell f = £, is free from traction, we must hé,vé 0, =0 wheﬁ E=§
which on substitution in (43) gives W, = — W (¢;). .

On the outer surface ¢ = £, we have to apply a normal traction R given by
R=oy (&) =W (&) —W (§1) . ‘ ' (44)

On the edge n = «, the distribution of tréctions betvc{eeng; and ¢ 4 d @ give rise to a force F and
a couple M about the origin which are given by '

Y & . ] ; : Jo I
F*f—-ocgf T(W—[—-Wo)(fzsinhzg_;_ch‘sian 36271 — K"CZS:ZliIlhzf :::;]df
% ’ . 45
M=af (W -+ Wo) o sinh £ (¢ cosh £) + K ot sint £ 0 cosh ) 2 vo)
& | o |
o - ¢ cosh & aW]df
K4 c2 sinh2£ 3683 . ]

Particular case IIT —Bending of an aelotropic incompressible éimular block into a spherical shell .
If ¢ cosh ¢ = ¢ sinh & in (6), we get the case of a circular block bent into a spherical shell, so that
£ o, e->0, and ccoshg, csinh ¢ >, ’ _ - (46)

, and consezluently the orthogonal curvilinear coordinates (£, 7, @). are replaced by ‘the spherical polar

coordinates (r, 6, ). Then the expressions corresponding to (43) to (45) are given by
) 0’11 = W —1— Wo ' ;

, . w1 W P 4
022=033=W'+W0+K272~§é—l;—_—wa'z’;’ ()

- R=W (7‘2) — W (7’1) (48)

, " | _
_ OV+J%H%L—G%I 22(aw,_ 1wy, .1 |
F= oc[ - . r K2y 2., o8 Ewas)'rdfr], ,{
' ! ‘ (49)
, E e , a ‘r
_J WL+ W) (rgs—rf‘)f (ﬂ[ _ 1 aW) i :
M= oc[ - 5 K2r2 o, B5 o, 73 dr] . Jl
1
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Thus to bend an incompressible citcular block into an elhpsmdal or: sphencal shell, we require a

resultant foroe F and a couple M on the edze together Wlth a normal force R on the outer surface.

-

ce N C ,L s I ON;
The problem of bendmg of an aelotropic compre351ble elrcula,r block: ben,t into an ellipsoidal shell has

been considered and solution has been obtained in terms of a general strain energy function. The incom-
~ pressible case and the case of a block bent into a sphemeal shell have been obtained as particular cases.
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