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It is observed that on similar reasons as in classical theory of elasticity, SH wave propagation in a semi-infinite poro-
elastic body is not possible and is possible when there is a layer of another poro-elastic medium over it, i.e., Love
 waves. Two particular cases ave considered in one of which phase velocity can be determined for a given wave
length. In the same case, equation for phase velocity is of the same form as that of the classical theory of
Elastioity. : - T . -

In 1941, M. A. Biot' gave the governing equations of the solid phase and liquid phase of a poro-elastic
medium based on a continuum model when static loads are applied on the boundary of the body. Numerous
Soil Mechanics problems are solved based on it. Later he extended the theory for the case of dynamic
loads®. Using this, only a few problems are solved. Pulse propagation in a poro-elastic medium was studied
by J. P. Jones® and wave propagation due to a point moving load by 8. Pault.

In this paper the problem of Love wave propagation is studied in a poro-elastic medium. Just as in the
classical theory of elasticity, assuming the earth to be a semi-infinite poro-elastic medium, SH wave pro-
pagation cannot be studied because of a ma,thema.tical difficulty. A few general remarks can be made in this
context. Later treaiing the earth to be consisting of a poro-elastic medium with a layer of different poro-
elastic material over it, is studied, ¢.e., Love waves. In one of the simplest - cases, ¢.e., - when ‘dissipative
nature and mass coupling effects of the poro-elastic media are neglected, the equation for phase velocity
bears a similarity with that of classical theory of elasticity. Hence no need of numerical work is felt, in
this context, . ,

FORM ULATION AND SOLUTION OF THE PROBLEM

In the solution of the problem of SH wave propagation in a semi-infinite elastic medium, say earth the
difficulty arises out of the stress fsee nature of the free surface. This makes the displacement to be zero identi-
cally. So Love proposed to treat the earth, to be consisting of a semi-infinite medium with a layer of another
elastic material over it and wave mainly to oscillate in the layer. But recently, another picture came to light.
Purushothama’, K. M. Rao & B. K. Rao® considering same problem in magneto-elastic and micropolar
semi-infinite media respectively showed that such motion exisis. Here it is to be observed that when some
side effects due to magnetic nature or micropolar nature are considered, the original difficulty can be circum-
vented. This is because the secondary effects produce additional shear stress(es).

In the case of a poro-elastic medium, the side effect of pores is considered. But within the limitations
congidered upto?, this side effect does not contribute to additional shear stress(es), Hence in this case, as in the
case of classical theory of elasticity, SH wave propagation can not be considere ' in a semi-infinite medium.

"Hence in the following the problem of Love wave propagation is considered = 9 semi-infinite poro-elastic
medium. However it may. be pointed out that when vigoe-poro-elastic semi-" . ite medium is considered,

‘the 8H wave propagation.may be possible in a semi-infinite medjum, tthe -
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Let the origin of a rectangular cartesian co-ordinate system be at the mterface, z-axis in the direction of
propagation of the wave and y—axis into the semi-infinite medium. z—axis is taken appropriately so that
oxyz 18 a right handed system. Let / be the thickness of the layer so that the free surface is given by y=—H.

In this case, the non-vanighing displacement component w and W of solid and liquid respectively are ,
given by
w=BewW+ik (z—ct) W =B, W+ik(v_ct),

Substituting in the equation of motion

?? _ o
NVa+(4+N) grade+Qgrade=c.—-t-2<pua+pmu+ba—<u_u)

G _ )
grad (@ + Be) = 2 (pud+ pu0)— b3, (a— D)
where @ and U are the displa.cemeht vector of a solid particle and a liquid particle respecﬁively, one gets
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where :
a=1r4 18, ps® = py pas — p1s”, P=P11+2P12+Pzz~’

Solving these two, we get two values for r, 4 1, say, and two values for 8, 4 3, say. :
Let the displacement w in the layer be )
’ ( —1y .y ) 981y+zk(z——-ct)
Az + Aa

and for the half space.
—ry iy +ok (x—eot)
W= ( 1 [} )
where 4,, 4, Ay are arbitrary constants.

The displacement W for pore water is given by

8 y+ik(x—ct) 'l',bl,——'P']_z]cc ( Aae—rly—}-As e,ﬁy)

=¢ _ i by + Py ko
iy +ik(@—c)—ry by — py," ko
in the la.yer Q;1.11(1 w ——\e/ W A1

for the half sp:ace.‘

The boundary conditi Tng to be satisfied are :

.2,
(1,) w must be conbmuous oot 1oss the mterface, ¢

)

(#6) %2y is continuous 8 i, she interface an?gy at the free surface must be zero,

%
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From the first condition, we get

4+ 43 = 4, | (1)
The second condition gives ‘ '
M a(—nin) i) =n[4cn+in] @
The third condition gives
. nl T —nH .
[4(—ntsa) @™ 4 anrise” ™| =0 )

For a non-trivial solution of (1), (2) and (3), we must have,

—1 1 1 ‘
Ny(ry — 538;) Ny(—1,i8) Ny(r+48,) =0 (4
0 (—r +id)e? (r+idye™
which reduces to ~ 7 , ' *
_ Ny(rg—i8)ry '
tah (nH)=— TR ETo0) — 5 Na(n—i5)] * @)

Separating real and imaginary parts, two equations in ¢ and & are obtained. .

_ Particular cases

(1) When dissipative nature of the media is negligible

. \ 1_— c? P 2
In this case b, = b, = 0, then 8§ =0 and r=j:kJ _Ps
N Pas
One of the equations from (5) is identically satisfied and then second reduces to, »
N2 Ty . , '
ok (nH) ==, . ©

In this case there is only one equation (6) connecting ¢ and k. Hence for a given value of ¢ in {c;, ¢p) &
can be determined. ‘

S

where

N1P22’ . N2P22,
c2=—1_2 andct =22 7
! ps® 2 ps" / )

This interval is bigger than its counterpart of classical theory of elasticity. Equation (7) is in the same form
as that of the clagsical theory of the elasticity; but for replacing the constants (¢; and ¢p). So the graphs
for ¢ and % are not given below.

(2) Additionally mass coupling effects are negligible

In this case, pg” = py’ = 0. As we can get ¢ and k in the same way as in the first particular cage, the
same conclusions are valid here also.
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