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A METHOD TO FIND OUT FLOW VARIABLES BEHI& THE SHOCK SURFACE IN STRONG 
POINT EXPLOSIONS IN AXI-SYM'METRIC! MEDIA - A 
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In this paper a new method using Eulerian Co-ordinate system is developed under local radiality assumption 
to study the flow variables behind the shock surface in cases of strong point explosions in an axi-symmetric ex- 
ponential medium and in a medium where density in the undisturbed medium obeys some axi-synimetriopkwer laws. ' 

Several authors have studied the cases of a strong point exprosiohs in an exponentid gaseousmediums 
in recent years. We have already (the method devised by Laumbach and Probstein-I), modified B.K. theory 
of Sachdev2,3, and lastly the technique devised by 0ppenheim4 et al. Sakashita6 has demonstrated how 
Laumbach and Probstein method can be utilised to study a splieroidal model which is of great interest in 
astrophysical context. 

In  this paper a new technique is developed to st& the character of flow variables behind the shock 
front in axi-symmetric models. This new method can help us to study the medium where density law in the 
undisturbed medium is a function of the product of the Eulerian distance r and the polar angle B which can 
be measured from the vertical axis of symmetry. 

We have presented two cases in this paper. The first part is a case where the density law in the undis- 
turbed medium is of the form given by 

where p, ig some central density a ~ u m e d  Bsbe constant, IS is @me const:ant and 8 is a fSinc-Hon of the polar 
- -. - - .. 

angle 0. -- - - - -- 
-e A - - . . - ". 

In the second part we deal with a medium where the density law in tl;e undi@urbed state is of the form - given by - 
- - - - 

po = PC (rep- 7 -- 

where a is some constant. - - - 
- -  .-. -% - - -  

We have shown how the case ~tttidiea i n z e  firstpart h3ps & to dudy models similar to that chosen 
by Sakashita6. We have also shown how the method can be fitted io the case of explosion in cold exponen- 
tial atmosphere similar to one studied by Laumbach and Probstein1.- - 

ActiualfJr, in the bt partj we have extendedsthe method developed by Deb Ray and-BhowmiokS to 
study the exponential medium to the case of spheroidal symmetry or axial symmetry in an exponential 
medium. \ 

In  the second part we have extended the solutioa obtained by Deb Ray7 for spherically symmetric 
medium to the cage where the undisturbed medium satisfies some axi-symmetric power law of density. 

Local radiaiity assumption is assumed here for both the partd following Laumbach and Probstelnl-who 
used the game assumption in similar medium in developing their method to obtain v'ery good results. Our 
method is only valid as long as the local radiality assumption is valid. 

- - 

E Q U A T I O . N S  O F  M O T I O N .  

If we consider the general equations in Eulerian Spherical polar co~ordinate system and neglect the 
gradients in the 8 and + direction (i.e. under the assumption of local radiality ) we obtain the equation of 

. - motion as 

au au 1 alp 3r=---  - - 
P ar 



Dm. 86. J., VOL. 28, JULY 1978 

The equation of continuity reduces to 

, Energy equation is 
- 

where 

u (q, in general equations) 

r=pasticle velocity in the radial direction, 

p=pressure at a distance r, 
I 

p=density in the disturbed fluid at a distance r ,  

y=ratio of specific heats which Gj assumed to be cowtant. 
I 

So, the above equ&Oiomt are equations when there is a spherical symmetry in a fluid medium. Bnt here, they 
are obtained from general equation considering gradients in 9 and # direction to be negkble. 

Let us introduce a new set of variables namely rl = re and tl = tO, where 8 is a function 
of polar angle 0 only. 8 might be measured from the axis of symmetry (verhcany upwards or downwards) so 
the equation (I), (2) & (3) can be re-written as 

So, we are now ~II, a new (rl, tl) plane. 

We notiae thab a relation of the type 6r = qpSt remains valid if we replace r by 9.0 and t by to. 
Therefore the particle velocity u (= qV) is unaffected by such a transformation. 

So, in forming the above equations only the variables r  and t are changed; p snd p are not touched and y 
is constant. 

Now, in both the cases we have neglected the effect$ due to presence of magnetic field, g r a m  or 
motion of the undisturbed medium. 

Firstly we further consider the explosion to be intense so - that the countkr presdure may be negl&ted. 

In the second part we have considered the cases of esplosion which is strong but finite, We have taken 
into consideration of a pressure law in the undisturbed medium. 

Density law in the undisturbed fluid can be written to be of the form given by p, = f (r 8). 

In the firat part f (ri 0) = pk0 and 6 the second part .. f ( r@) = 



BHOW~UIOK : Wow-VwiLiblei 3ehbdtZie Shoofi Surface 

F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  B O Y - N D A R Y  C O N D I T I O N  
- - I 

Case I 

Let p, = density in the undisturbed medium - . - 
c -  ? 

. . - .  - - = p,'eP*@ ' - - C (7) - - - 
- - - i. - .  

where r denotes the Eulerian distance of a fluid particle in a definite direction p, and t9 being suitable 
- .  . . constants. 

In the changed oo-ordinate8 po = p, &I (8) 
\ 

With the equations (4), (6) and (6), the equations governing the ftow can be put in the form 

a P au ~ P Q  =, - - 
2 + u  - + PC. +- at, asi fl - - -  

(lo) 
- - 

U, 13, P,  representing the velocity, pressure and density, respectively of gas at a radial digtance r, from 
the centre of explosion, y is the ratio of specific heats: -= 

where E = 4 pu2 ;t p/ (y  - 1) (11) 

Y I = + w 2 +  y -  - 1 . p  (12) 

The equation (6), (9) Bn (10) aw same as in o k  earlier works8. Hence we arrive at the following 
differential equations : 

- - - _ . i  - 

Equation (9) can be put in the f p  . - -- -- - - 
- 

dE - 2 a = - 
- - - dr; , p i  

l '  u' 1) (14) 
- - - - c . - & .- - ~ ~ u ; r f i o n  (105% of the form -- A - A  - - --- -- . - . . - .  - - - h -c .- 

&; 1 
-. 

1 1 ap a R, -- =-- at +- -+- - 
p ôr; . - & - I  - 1 - 4 .  a; 1-et" . 4 . (16) 

- 
Now, the equations (13), (14), (16) with the help of (16) reduces to 



d~ ‘ 2 a - = -  
art 

- (rt2ut I )  
Pr ' (lrt 

1 2 -  - - 2 log t/t, 1 2%' - - -- 1 
p '  YP' U' - 1 + 1 - u '  . art + l -u t  . 2ec'/rt 

The equations (17), (18) and (19) are notbiag but the differential equations 19, 23 and 25 obtained 
by us in our previous works. 

The h e r e n t i d  equations are solved in our earlier work6. Therefore, the numerical solutions obtained 
in the work6 are still valid here as long as tbe flow remains locally radial and the explosion is strong. There- 
fare the conclusion given at the end of the . paperB . remaim v&d in case of axi-symmetric flow discussed - - - .- 
above. _ - -, 

. . .. - 
Case II - - - _ _ _  _ ,. -. : - - --  - - - 3 - . - 

Under the same set of transformation the medium where the density law is given by 

Po = pc(r@Ia = Pcrla (20) 

a a d  pc being mme constants, is considered. 

The equations (4), (5) and (6)  are etiu the b'ask equations rtre to be solved. Bollowing Deb Ray7, we 
at  the folloying differential equation in (T,, 6) plane 

Eq. (5) and (6) redurns 

P 
Now, if we resubstitute rl T 8 ; Vl = V , - - , Rl = R 8 the equatlon (21j reduces R, - R 

- - - 
is the equation co1~'e~pnding to ord&aiig power law in spherioally ~ @ i t r i ~  model. 

Eqn. 5 oan be put in the form 

Now, using the substitutions 



B H O ~ O K  : Flow Variables Behind the Shock Surface 

Equation (23) reduces to 

which is again an equation in spherically symmetric model7. Thus we see that the equation ( 2 2 )  

and (24) are same as obtained by Deb Ray7 though density in the undisturbed medium is a function of 
( r10 ) under local radiality assumption. 

Therefore, the exact analytic solutions obtained by Deb Ray7 are still valid. 

C O N C L U S I O N  

What we conclude here is that a proper set of transformation is available which can transform the solu- 
tion set of spherically symmetric problem to the sol~ltion of axi-symmetric problems provided the density 
law in the undisturbed medium is given by po =pc (@)a . -Therefore, we can further conclude that 
the solution for pip,, pip, and u/ul as obtained by Deb-Ray7 is still valid in axi-symmertic 
medium as long as the flow remains locally radial i.e. the gradients in 8 and + direction remain negligible. 
Exact analytic solutions obtained by Deb-Ray7 is thus extended to the case of axi-symmetric medium. 
The solutions are not reproduced as we have not solved the differential equations here which are already 
solved in the reference mentioned. 

Applicatiort o f  Case I 

In the first case the density law is of the form p, = p, eBr0 

If we choose 8 = &- where 0 is 

the polar angle measured from vertical axis of symmetry, we get a model of spheroidal symmetry similar 
to one used by 8. Sakashita5. Our results are valid in the model as we did not put anyreatriction on in our 
derivation of equations. So we can conclude that the mass behind the shock front remains in thin shell if the 
explosion is s t r k g  even if the total energy is not constant. This is the basic assumption made by ~skashita5 
following Laumbach and Probsteinl. Moreover we can obtain the flow variabJe behind the shock front in 
such a model by the method devised above. 

The other interesting features is if we put O = cos 8, but 8 is measured from the downward $rec- 
tion of vertical axis, we come to the problem of explosion in cold exponential atmosphere similar to one 
discussed in great details by Laumbach and Probsteinl. So the assumption of Laumbach and Probsteinl 
regarding the formation of thin shell behind the front is justified if the explosion is strong and flow remains 
locally radial even when the energy is not constant. Moreover we can deduce the flow variable behind the 
shock front in a such case. 

Applimtion o j  Case II  
Let O = GOS 0, then the density la,w in the undisturbed medium is po = p, ha where h is the height 

of a fluid particle from a level surface in the undisturbed medium. Hence the case become a case of strong 
but finite explosion in the atmosphere where density law is some power of height from a level surface. This 
type of density law is more real than the usual assumption of density varying as power of radial distance 
from the source of explosion. 

C O N C L U S I O N  

We have shown in both'the cases I and I1 that the solution obtained for flow variables behicd  hock 
front in the cases of spherical symmetries can be extended to the case of spheroidal symmetry provided the 
density in the undisturbed medium is a function of the product of Eulerian distance aad some function of 8- 
the polar angle measured from the vertical axis of symmetry and the local radiality assumption is valid. 
Here, in case I1 we have shown also how the similarity method can be made useful in the case where the 
density in the undisturbed medium is given by a law of the form p, = pc ( r 8 ) a  where p,, PC, r ,  @,a 
are already defined in the text. The method shown in this paper will be applicable in many other cases in 
future in dealing with axi-symmetric blast wave problems. 




