A METHOD TO FIND OUT FLOW VARIABLES BEHIN’D THE SHOCK SURFACE IN STRONG
POINT EXPLOSIONS IN AXI-SYMMETRIC‘ MEDIA S -

g J. B. BROWMICK _

= sk Xavier's College; Talouttn™ -l
(Received 15 December 1076; revised 2 June 1977)'

In this paper a new method using Eulerian Co-ordinate system is developed under local radiality assumption
to study the flow variables behind the shock surface in cases of strong point explosions in an axij-symmetric ex-
ponential medium and in a medium where density in the undisturbed medium obeys some axi-symretric-power Iaws.-

Several authors have studied the cases of a strong point explosions in an exporiential gaseous mediums
in recent years. We have already (the method devised by Laumbach and Probstein?), modified B.K. theory
of Sachdev®3, and lastly the technique devised by Oppenheim? ef al. Sakashita’ has demonstrated how
Laumbach and Probstein method can be utilised to study a spHeroidal model which is of great interest in
astrophysical context.

In this paper a new technique is developed to stu&y the character of flow variables behind the shock
front in axx-symmetrlc models. This new method can help us to study the medium where density law in the
undisturbed medium is a function of the product of the Kulerian dlstance r and the polar angle 8 which can
be measured from the vertical axis of symmetry. »

"We have presented two cases in this paper. The ﬁrst part is a'case where the densﬂ;y law in the undis-
turbed medium is of the form given by
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where p, is some central density assumed ﬁobe constant, B is  gome constant and @ is a ﬁmcﬁfon of the polar
“angle 6. =T = = -

In the second part we deal with a medium where the densﬂ;y law in the undlsturbed state is of the form
given by - - 3 )

po = p, ('r@)ai ?
where o is some constant. - - - -

We have shown how the case studied mthe ﬁrst@aﬂ; hjps onz to study niodels similar to that chosen
by Sakashita’. We have also shown how the method can be fitted to the case of exploslon in cold exponen-
tial atmosphere similar to one studied by Laumbach and Probstein?!.- : - :

Actually, in the first part; we have extended the method _developed by Deb Ray and- Bhowmicks to
study the exponential medium to the case of sphero1dal symmelry or axial symmetry in an exponential
medium. '

" In the second part we have extended the solutions obtained by Deb Ray? for spherically symmetric -
medium to the case where the undisturbed medium satisfies some axi-symmetric power law of density.

Local radiality a,ssumptlon is assumed here for hoth the parts following Laumbach and Probstein!“who
used the same assumption in similar medium in developing their method to obtain very good results. Our -
method is only valid as long as the local radiality assumptlon is valid.

.EQUATIONS OF MOTION

If we consider the general equations in Eulerian Spherical polar co-ordinate system and neglect the
gradients in the 0 and ¢ direction (i.e. under the assumptlon of local radiality ) we obtam the equatlon of
motion as
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The equation of continuity reduces to

ar 1 2 = v ' -
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* Enérgy equation is - ” A
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~ where -

# (¢- in general .équations)
re=particlo velocity in the radil direction,
p=pressure at & distance 7, .
p-—densﬂ:y in the dmturbed ﬂuld at a dlsta.nce 7,

y=‘rat10 of specxﬁc heats which is assumed to be constant.

So, the above equations are equatmns when there is a sphencal symmetry in a fluid medium. But here, they
are obtained from general equamon consndermg gradients in 8 and ¢ direction to-be negligible.

Let us introduce a new set of variables na.mely r, = 10 and t, — 10, where 0 is a functmn
of polar angle 6 only. 8 might be measured from the axis of symmetry (vertically upwauds or downwards) so
the equation (1), (2) & (3) can be re-written as /
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So,. We are NOW in a new (rl, tl) plane

- We notice that a relation of the type & = q,St remains vahd 1f we replace r by 1@ and ¢ by 18,
Therefore the pa,rtncle velocity % (= ¢,) is unaffected by such a transformation.

So, in forming the above equatmns only the varlables 7 and t are changed P and p are not touched and y
is constant. . ’

Now, in both the cases We have neglected the effects due to presence of magnetlc field, gravity or
motion of the undisturbed medium.

Flrstly we further consider the explosmn to be mtense so that the counter pressure may be neglected.

* In the second part we have considered the cases of exploslon which is strong but finite. We have taken
into consideration of a pressure law in the undisturbed medium. )

Density law in the undlsturbed fluid can be writiten to be of the form given by py = p.f (r ©),
In the first part f (r; @) = pPr® and in ‘the second Ra,rt f(r8) = (r@)®
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FORMULATION ‘OF,THE PROBLEM AND BOH_NDARY‘ CONDITION

C'ase 1 _
Let po == densﬂ:y in the und:sturbed medium : : o
| S = e (M)

. - -C

e .

, = p, efr@

where r denotes the Eulenan dlstance of a ﬁmd pa,rmcle in a deﬁmte dlrectlon Po. and /3 bemg sultable

constants. L Tl ! : : o :

In the changed co-ordmates po = po ey , T (8)—
Wlth the equatlons (4), (5) and (6), the equatlons govermng ‘the ﬂow can ’be puf in the form ,

B | 1 ‘
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U, P, p, representmg the veloclty, pressure and density, respectwely of gas at a radlal dlstance | r1 from
the centre of explosion, y is the ratio of specific heats_ = o «
where E =} pu® o+ plly.— 1) PR ¢
o o 14
AT = 2 , 1‘.1) (12)
The equatmn (6), (9) & (10) are same asmour earher Works“. Henoe we arrive at the followmg
differential equations: - , , R
Equatlon (6) ean be put in the form : i
o 19p vy 20 . BB S T 7
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Equation’\‘(Q) can be put in the form . .
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N ry = ’R—l' = ‘R‘—-'r and"'u ;--» {1;:'{ V ]?* o > -
‘ , AR1 = = logtljtm = — log tfty = 5/2“R ] - - (16)
- Now, the equations (13), (14), (}15) with the help of (16) reduces to ‘ ° )
I Y 3 . 2log bty - ' : ‘
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The equa.tioﬁg (17), (18) and (19) are notbing but the differential equations 19, 23 and 256 obtained
by us in our previous works. : : ‘ ,

) The (/iiﬂ'erentiz_;l equ?.tions are solved in our earlier worksé. -Therefore, the pumerical solutions obtained
in the work® are still valid here as long as the flow rémains locally radial and the explosion is strong. There-
fore the conclusion given at the end of the paper® remains valid in case of axi-symmetric flow discussed

. above. : = -
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Under the same set of transformation the medium where the -density law is given by

Po = Pc(’r@)a‘ = pcr]_“' V . : o ' (20)

a and p, being some constants, is considered.

The equations (4), (5) and (6) are still the basic equations are to be solved. Following Deb Ray?
arrive at the following differential equation in (r;,. &) plane g Leb hay’, we

Eq. (5) and (6) reduces to

{a{?; 1)+1}/R1._ 1w
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Now, if we resubstitute r, »r @ ; V; =7V, 1—{1: =5 R, =R O the equation (21) reduces to
1 R 1 au o
1 o y—1 o2p _ 2 "R{a(y_l)+1}—77 C(22)
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which is the equation corresponding to ordinaty power law in spherically symﬁ-'étr{é model,
Fqn. b can be put in the form v
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Now, using the substitutions

.
"= R,
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Equation (23) reduces to

1 ap_ _ 1 2t 2w, _a
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(24)

which i3 again an equation in spherically symmetric model’. Thus we see that the equation (22)
and (24) are same as obtained by Deb Ray” though density in the undisturbed medium is a function of
( 70 ) under local radiality assumption. ] ’ '

Therefore, the exact analytic solutions obtained by Deb Ray? are still valid. v

CONCLUSION

What we conclude here is that a proper set of transformation is available which can transform the solu-
tion set of spherically symmetric problem to the solution of axi-symmetric problems provided the density
law in the undisturbed medium is given by p, ==p, (r@)a . Therefore, we can further conclude that
the solution for p/p;, p/p, and w/u,  as obtained by Deb-Ray? is still valid in axi-symmertic
medium as long as the flow remains locally radial i.e. the gradients in 8 and ¢ direction remain negligible.
Exact analytic solutions obtained by Deb-Ray? is thus extended to the case of axi-symmetric medium.
The solutions are not reproduced as we have not solved the differential equations here which are already
solved in the reference mentioned.

Application. of Case I

In the first case the density law is of the form p, = p,efr@

e® 2 .b
If we choose @ = 4 [1 -+ L cos? 9] where 0 is

1 ’—612

the polar angle measured from vertical axis of symmetry, we get a model of spheroidal symmetry similar
to one used by S. Sakashita®. Our results are valid in the model as 'we did not put any restriction on in our
derivation of equations. So we can conclude that the mass behind the shock front remains in thin shell if the
explosion is strong even if the total energy is not constant. This is the basic assumption made by Sakashita’
following Laumbach and Probstein!. Moreover we can obtain the flow variable behind the shock front in
such a model by the method devised above. ‘ \

" The other interesting features is if we put @ = cos 6, but 8 is measured from the downward direc-
tion of vertical axis, we come to the problem of explosion in cold exponential atmosphere similar to one
discussed in great details by Laumbach and Probstein!. So the assumption of Laumbach and Probstein?
regarding the formation of thin shell behind the front is justified if the explosion is strong and flow remains
locally radial even when the energy is not constant. Moreover we can deduce the flow variable behind the
shock front in a such case.

Applioaté'qn of Case 11

Let @ = cos 0, then the density law in the undisturbed mediunr is p, = p, h% where 7 is the height
of a fluid particle from a level surface in the undisturbed medium. Hence the case become a case of strong
bu* finite explosion in the atmosphere where density law is some power of height from a level surface. This
type of density law is more real than the usual assumption of density varying as power of radial distance
from the source of explosion.

CONCLUSION

We have shown in both the cases I and II that the solution obtained for flow variables behind shock
front in the cases of spherical symmetries can be extended to the case of spheroidal symmetry provided the
density in the undisturbed medium is a function of the product of Eulerian distance and some function of §—
the polar angle measured from the vertical axis of symmetry and the local radiality assumption is valid.
Here, in case IT we have shown also how the similarity method can be made useful in the case where the
density in the undisturbed medium is given by a law of the form p, = p, (@) where p,, p,, r, 8,a
are already defined in the text. The method shown in this paper will be applicable in many other cases in
future in dealing with axi-symmetric blast svave problems.
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