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This paper gives the solution of the equations of internal ballistics of a gun by taking the exact form of density of
* the propellant gases obtained on the basis of Lagrange approximation. A general quadratic form function is used.
Methods based on the conventional density function, C/AX, have been givenby many Ballisticiansh2,

This gas density function is obtained under the assumption that whole of the charge isburnt before the move-
ment of the shot. This assumption leads ustothe conclusion that the density of the reaction products con-
tinuously decreases with the motion of the shot. However, in reality propellant is not burnt completely when
shot starts moving. Due to burning of the propellant, gas will continue to evolve. Thus density of the pro-
peﬂant gas must increase particularly in the initial stages of the movement of the shot. It istrue that when
shot is moving rapidly through the gun barrel the density of the reaction product must decrease and parti-
cularly it is so after all burnt stage, Soin reality density of the propellant gas should increase in the initial
_ stage of the shot movement and then may start decreasing even before the all burnt point is reached. This
is important when the ratio of the charge weight to shot weight ig not very small. :

To consider the gradual burning of the propellant, Chugh3 assumed a more realistic gas density function
given by (Cz/AX). Chugh%5, has worked out the solution of the equations of internal ballistics of a gun
based on his density function. The theory has been extended for composite charge by Prasad®’. Recently
S.P. Aggarwal, J. K. Modji, and P. 8. Varma??, have given a new approximation to the density of the pro-

pellant gases viz. -g%;,—%) . Some modifications in the density functions were made by adding or omit-

ting some terms from the density functions of the propellant gases. But by taking the exactcform of density
p

, [y + dz—C(1—2);8] °

it is possible to get a solution of the equations of internal ballistics of a gun. In this paper, taking Lagrange

density approximation, a method has been given to solve the intefnal ballistics equations. Density-distance

curve obtained by this method gives that the density increases in the initial stages of the movement of the

shot and finally starts decreasing as the shot motion becomes more rapid inside the gun barrel.

function of the combustion products based on the Lagrange approximation, p =

BASIC EQUATIONS

A brief description of the equations of the internal ballistics of a gun, for the system under consideration
is given as follows : ; _‘

Form Functions
: 2

The form function gives a relationship between the charge mass fraction, z burnt during time ¢ after
ignition and the unburnt web fraction f at time ¢. It is derived from geometric consideration of the grain
shape and can be expressed as ' :

e=(1—f) A+6f) 0
The Bum'ing Law ’
The burning rate is represented by Vielle’s law .
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The Energy Equation
TThe energy equation is given by

{

- . 0 o 1 w = PN _ ce . .

W accounts for the work done by the reaction products in pro;z'iding kinetic energy to the shotA‘ and

propellant gases as well as the dissipation in overcoming bore resistance and heat transfer to the gun barrel.

Gas Motion behind the Moving Shot - o

. Weshall consider the motion of the gas, produced due to the burning of the propellant behind the mov-
. ing shot. The equations of continuity is SR ! ot

Y .
co e . i
oY , N ' gt - i ay . K : C‘Z e S . )
' : At 45 B ‘
‘ ‘ ¢ ; E ‘ ey ,71""‘;_;:’; ; viiﬁ{ ‘ .
Also equation of conservation ot mémentum is -
' e 1w
. Where u (g, ) is the gas velocity at a distance y at any time ¢ after the movement of the shot, from the
branch. ' E . \ ‘ fhanides é
3 - dz‘ : 3 : : .o A -7
. i Tt: ) * 3 i - o ‘ ' /.( - . . . I
Here ~ = O, s the mass per unit volume produced due to burning the charge fraction 2.
4‘(w”+l) +5 S 2 ’ S s : R

This term acts as a source function. *

To make the equatioas dimensionless the folIoWing transformations are used

RN

DR . % BFC
¢ =lt7, A=K~ , Vo=—p5 ,
‘ PAl o md pdl
g --—-E,—O- s Cb-——FCT’ ;8“57'@— > 7 V/,,(6):/
_ padl __/_ Vot ooV ‘
| €m~—“‘__FC' ’ T = 7 "7—7; , J
Put Y =yfl, U=vufVoondo =0/ . .

 From solution of the equations (4) and (5) and using (6), we get
i} - ‘ ’

¥ =T [T — Va2 o
B T

and ‘ o : .

s €z v ﬂ AY =Y, dn:,;_,‘ d%
(=4 2M“;(§+a;z)[2(y ) g+ (§+az);>7-l7'+“d—rz}], @
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where ! :
L ¢ . FO
SRR B €—105m M= T Bm Vg
At ‘ Y =Y, , U—nandlj_;’, o]
Alsoat ’ ; Y ‘==."«Yb , L=10 |
8o equation (8) gives ' k b
, €z dn a7 7 . ‘
oot g [Eoems o ©
Using value of { from equation (8) and integrating, we get Tonlesen e D e e
R : - i
1 ez Ay d=7
b <Y.-—_n>f“’~”,’—‘*+fem[ 2] a0
' Now kinetic energy of the propellant gas is
Ep = _J‘ ul 4 dy
(LA
This gives » i ; “
~ | A AL g dz de
kinetic energy of the shot = % my? a.nd fnctlonal losses due to boré resmtance can be assumed eqmva.lent
to [0- <05 X klnetm-en.ergy of the shot] : :
Thus we have :
. 2 ! E -
W= L ey L2V "W*’ wte (£) —=ng +Eh
2 S \dr
Energy losses due to heat transfer can \be assumed as o K
E;.-— KH_I_?%'_”ZL P
Let 4 o ,
=D @+ Epma s = Tl
- - K ¥ = o T R
‘Therefore y , 2
W L06mV,? , y ez dzf  dz , :
FO T T 2FC [(1+KH+ ) o+ dr(;“ﬁ?—)]
So energy equation (3) becomes ' i ” 5
v =D s wr® e ﬂ)ﬁ f
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‘Equatwn of .Motum qf the Shot

“After accountmg for the bore res1stance the equatio,n of motlon of the shot in ‘non-dimensional form .j
. can be ertten as. g : SR : S o A

S ' ' ~dr T_—Mlga e : e /(13) l:

Y

~

A T LA ;e (14)
Final Bquations of Internal Balkistics .~ . - |
’ By taking . as mdependent variable the equatlons of ] mternal balhstms csm be wrlt&en ag

\/(1-’-0)2-—41% R " L ST
ANtEmem g

~

/ . -

H S 7"7 b j Ui 1:# , L ) R o E?;w o , R o (16} : .
- o . /= a 1 f_i) ’m eazMI 2 o o o // |

H 4 |
cand E . B

z=;(f-,Bz“)€¢+ (’_’g;"ul) 7 + 812 M, (4 T

,_‘-}-leg,%_’n&} (19):/_
5,' Mlg"dq) -

 Initial Conditions RS e

Abr=0,9 = 0, f =1 and {, = C,, In addltmn to ﬁhls for the numerwa.l solutlon ef equa,tions
(15) to (19) we requlre the value of elther Z;, e

o

| _ Numerwdl Solution

~ Binge elther {y or % are not easxly determmed 0x] penmently the system of equatlons (15) to
(19) can be repla.ced by a new syst ,

> o .‘ ; d’) ’ ) Ml ‘ " (Z /Ca) SERREE .
. ) _dé t— ” : - ;<‘ S . | _— -
M | . @

 '  ! g g( 1+'€;) B o | (22) "

,.'z\vf=(i‘§—\~l3,z)€m+ (72;1” o
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In this system # can be deter mmed in terms of shot start pressure from (23) and (24). By Runge&Kutta 1 -/
method numerical solutlon of equatlons (20y to (24), with lmtla,l condltlons § =14 = u and 2

determined above, is found. The computed values of Ko, 2§ — Ly Cm are used to ﬁnd the left out

terms ‘ , ‘ . %] :
» 22 M 4 iMoo @yt
A = eaz ! (§5 *"-)=-L[€z+ ———b._—-_.____l —~—-—] A
-2 )2l T yA Tt —d6y dr) |
T eale 4 “ = 4
P 56 (?s fz,;)*t»r |
Tamd T el f \ - o I ¢ (25)
G~ale;,h __.l’_‘d_z_f_aMl_____qn“} . E
£ M gs‘—-' d
P 1’ ~ ) J

o in equa.tlons 17) (18 (19) The va.lues f01- &y Zm, L a.re corrected accordmgly

- (&) carrected ( b) calculated — 4 B - o : ‘ (26)
(m éorreqleci : ) m) ‘cqlculatedk _“B P . (27) \ -
C ( r—1) 9 " D
PR 4 3[ %+ 2, 7 G],’ ‘ . G
o qorré;cted. ( § . My de n (4 ez) ] , ’ (28)
S \/(1+0)’ R RN
~Also densrby of the rea,ctlon gas can be calculat ed from equation ' |
N . » z 5 R | ‘
PE A - (29)
h (Tj‘) « (€ Fur)

! Aftér'all burnt o o ' .

By usmg computed values, we can get values of &, G, §m s 4o p and'n when z;ll.{;he propellé,nt ig
burnt 1.e. at z = 1. o , ~ oL _

' Solution after all burnt ; is given b\y o L ’ P
i [1+(y—1)/(1+e/3>]

(o lm (&—B) | A

T Y — 1L+ <f3) L - (30)
. (£—B) o -

and . SR _ | p
1— — NS MY \ :
I EEUNE )](\,,,._‘1‘), e

where {mz, and £y are. the values of {m and 5 at all bumt ‘
Equa.tlons (30), (31) glves {m and 7 for a.ny value of ¢ afterall bﬁrnt. Usingthese, we have -
/b , L P {m / e S S :
| EEE b= TFay | - (62
and . - S L o o
T S S e o
S : . b =’ Lm TTI‘JBT n . ‘ o (33)
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i TABLE 1

EXPERIMENTAL DaTA

_ Gun No.1

Particulars Gun No. 2
Barrel length 586-232 cm 395-986 cm
Yol. of the chamber 18697-567 cu cm © 8519-9276 cu cm .
Bore area’ 135-4836 sq cm 46-616036 sq om :
Force constant 10059-2128395 cm-ton e/Kg - 95585280375 cm-tonne/Kg
Charge wt. 13+7996567 Kg 2-6798268 Kg
Co-volume '\

Reciprocal of propellant density

Shape factor
Web size
burning rate

Kn
Shell wt. ’
Short stact pressure

1004 -3336216 cu em/Kg ;
603-3227151 cu em/Kg-
—0-15

0-2159 cm

0-2479887 cm/sec/tonne Sq em
1-27

0-1

33:5159793 Kg .
19-6654077 tonne sq cm.

10036110794 cu om/Kg
6098255947 cu cm/Kg
—0-172 : )
0-110998 cm .
(-2270646 cm/sec/tonne sq cm
1-26

0.1 - J
5-9701897 Kg

‘ TaBLE 2

_ 29-4981115 tonnesqom

~

‘RESULTS 0BTAINED FROM HUNT-HIND’S METHODS AND THIS METHOD

Particulars

' Hunt-Hind.’s method

" This method

" Muzzle Yelocity
Gun No. 1 Maximum Pressure
All burnt position

97707- 8636753 cm/sec
1680411493 tonne sq em
190-1573506 cm

© 98180-5995746. cm/sec

163-0921240 tonne sq cm
207-0010277 om

Muzzle velocity

" Gun No. 2 Maximum Presstre

All burnt position

1047352091588 om /sec
173-5292782 tonne si-cm
103-4649160 cm

1057818683352 cm/seo
168-0975635 tonne sq cm
112-9863394 cm '

NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS -

‘Results obtained by applying the above numerical technique and the Hunt-Hind’s method, using two -
gun data given in Table 1, are presented in Table 2. Using these two techniques, pressure distribution
for two guns were found. Fig. 1and Fig. 5 shows the distribution of mean pressure against the distance tra-
velled by the shot, for each gun. It is observed that maximum pressure obtained for each gun, using the

325 .
GUN Noat ‘ P
i X
207 _ 908 ,
i _ 985 1
(244 ,===— HUNT HIND'S METHOD 975 .
] —— NEW METHOD 4965
20+ ) © 49554
€ gl ) \f 9454 -
W . ~
Cedtl RJEER)
i " 49254 -
| 54 .
2 ’ . 915 -
‘ 9057
' GUN No 2,
. #8959 b
Ny \\ .
o8 *885
, ) 8754 S—
* - T T t T — T LI 27 N ™% L3 L U
04 8 2.6 34 42° 50 58 6.6 7.4 82 9.0 Na 2.2 300 BB 6.8 504 6.2 TO_T%B 8
£ - : £ -
Fig. 1—Variation of the mean pressure with the distance Fig. 2—Variation of the ratis of the shot base preanretbthe

travelled by the shot, - mean pressure with the distance travelled by the shot,
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=

070+
GUN Noo2 . {
1060~ o :
. —— 0%,
p GUN No.d ) ) | GUN Noil
1,050 ]
4 -045
A N —-
g 1,040 5 .
2 | 035] \
o BY HUNT-HIND’S METHOD .
1,030+ w 1 , .
+025-
to 020 < :
f «015
1,010
n 005 BY THIS METHOD .
0004 e e ety 1,0)¥—— -
* 4 30 | 4 : y 4,0 4 2.2 3.0 38 46 54 62 70 7.8 8.8

L4 3.0 4 62 %9 %4
- ‘ < -

Fig. 3—Variation of the ratio of the breech pressure to the mean  Fig. 4—Variation of the density of the propellant gas with
pressure with the distance travelled by the shot. the distance travelled by the shot.

032+

S~ GUN N"o.z
/ < .
) \ .
254 O
=055 7 - \:
224 ~~= HUNT HIND'S METHOD 1 3 GUN No:2 )
~—— NEW METHOD . 20451
«20+, ] ,
. , T ¢ i ) ) .
J: 1 *0357 \'By HUNT-HIND'S METHOD R .
¥ i | . .
q!6J| “v
} ' :025
- *
12
- <015
. 081 1 .
| == <005 4/ BY THIS METHOD
Q2 T T T T T T Ty T gy N\ (I‘O) T T T T T T T T T 4 T 1
18 34 5.0 66 82 9.8 ) 14 22 30 38 4.6 54 62 70 7.8 8.6 9.4 102
¢ ) ) .
Fig. 5—Variation of the mean pressure with the distance Fig. 6—Variation of the density of the propellant gas with the
-~ _travelled by the shot, o " _distance travelled by the shot.

new method, is less than the Hunt-Hind’s predicted maximum pressure. Also initially mean pressure is high *
in the Hunt-Hind’s method than this method but after all burnt it is low. Fig. 2 presents the graphical -
representation of the ratio of the shot base pressure to the mean pressure against displacement of t!m shot,
for each gur. Also in Fig. 3 the breech pressure to the mean pressure ratio has been plotted against the
displacement of the shot. Fig 4 and Fig. 6 presents density curves for both the guns. Density curve based
n the Hunt-Hind’s method showsthat, the density of the reaction products is maximuminitially and then
gec‘rea.ses continuously. On the other hand density curve based on method presented shows that density of
the propellant gas increases in the initial stage of the movement of the shot and then slowly decreases. .

CONCLUSION L

. ' The maximum breech pressures predicted by the new system are lessthan that of Hunt-Hind’s method.
All burnt position, predicted by the Hunt-Hind’s method, occurs early thanthe predicted all burnt position
of this new method. Muzzle velocities caloulated by the new system are very much close to the Hunt -Hin_d’s
predict ed velacities, ‘ . . ' - ’
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. P €

Hence, it is concluded that the technique presented is capable of acourately simulating gun-eyole (dis-
tance travelled, pressure, energy, density..............  .asa function of velocity) for any loading condi-
tions. - ST SRR o S : :
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