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The offect of radial velosity on the stability of viscous flow bstween two arbitrarily spaced concentric porous
¢ylinders in the presence of a radial temperature gradient has been examined by numerically solving the resulting
differential equation with variable coefficients. The combined influence of suction (or injection) and the tempe-
rature gradient has been presented graphically.

-Walowit!, et. al., studied the influence of a radial temperature gradient on the stability of flow betwoeen
two cylinders with wide gap, by using Galarkin method. Recently Butler and Mckee® have attempted the
same problem, applying a variational technique. The object of the present paper is to examine the ¢ym-
bined effect of radial velocity and temperature gradient with arbitrary gap. Theradial velocity means suction
or injection at the outer cylinder according as it is directed away from or towards the axis. The problem
has been solved numerically by applying the technique used by sparrow, Munro & Jonsson3 to solve the
simpler case when there isno temperature gradient or radial velocity.

It is'concluded that i the presence of negative temperature gradient, injection of fluid at the ybuter
cylinder produces a stabilizing effect whereas its efféct is reversed when it is coupled with positive tempera<
ture gradient. In a similar manner, suction from the outer cylinder produces an opposite effect.

The study is helpful in certain cases whereit may be beneficial to inject somecoolantinto the cylindriccl
surface of a system to counteract the excess heat generated. -

EQUATIONS OF THE PROBLEM

f

Inthe presencé of suction the steady state solutions of the basic equations governing the axisymmetric
flow, givethe velocity and temperature distributionsin cylindrical coordinates (r, 8, z) as:— ‘
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In the above expressions, «,, g, v'; are the components of velocity in the increasing 7, 6, z directions.
R, Q,, & T, are the radius, angular velocity and temperature of the inner cylinder respectively and R,,
Q, & T, are the corresponding quantities of the outer one. v; is the radial velocity of the fuid at r = R,
v is the kinematic viscosity and K is the thermal diffusivity. R
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The equations governing the flow arelinearised by applying small perturbation theory and Boussinesq
approximation. . .

The disturbances are analysed into normal modes of the form

(tty, ug, w, 8) [u (r),vi{r),w(r),0 (r)]ep" cos kz

Uy w(r) eP sin k2

8P . .
where w= —— ; 0 and 8P are the perturbations in temperature and pressure respectively, k is the wave

number of the disturbance and p is a constant.

. Now the elimination of u(r), w(r) and 6(r) from the linearised flow equations and some simplifications
result in the following eighth order differential equation in v. \
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Here T, & R are Taylor and Ray'eigh number respectively, « is the coefficient of volume expansion,
K is the thermal diffusivity, » the kinematic viscosity and C is a constant to be defined later.
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Also
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ol = pg3) (1 — pyd)
G, = [ (I —gA2) (g —472)

BOUNDARY CONDITIONS
From the requirement that the perturbations in velocity and temperature (i.e. u, v, w & 6) all vanish

at the boundaries £ =7 and £ = 1, we get the following boundary conditions under which the solution of
(3) issought.

At § =19
= | A,
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n 7
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Similarly the boundary conditions-at &= 1 are obtained by substituting 5 == 1 in (4)

where -
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SOLUTION

_ Letw, v, 0, and v, be the four solutions of (3) which satisfy the conditions (4) and further we
assume :

DQ’- =1 D%, = D%, = D7%4=0*4 L

RESULTS

The critical Taylor numbers (T';); depicting the onset of instability have been computed numerically

for n=10.95, 0.75 and 0.5 and p = 0.450, 0.280 and 0.125 respectively. For all the cases, values of

radial velocity parameter Ahave been takenas 4 1and0and those of Prandtl numberas 1and 7. The cases’

for A =0, which imply the effect of a radial temperature gradient ouly are trug for all Pra{ndt‘l numbers.

In case of cylinders moving in opposite directions (4 <<0)results have been obtained for gap ratio 0.95 and

angular velocity ratio —0.2. Other gap ratios with negative p have been excluded due to the involvement
of large amount of numerical work. These can be computed if so desired.

In the absence of suction (or injection) our results are in agreement with those obtained by Butler
and Mckee? applying a variational technique. Infigure 4, th.e values gf (T,); for the parameters == O..5
p=0.2, N =430, 4-60,0.0 and ¢ = 6.30 are suitable fOI‘th.lS comparison. The values of N .an.d @ shown in
figure 4 are equivalent to 4-0.5,4-1.0,0.0 and 3.15 respectively of Butler and Mckee. This is due to the
difference in the definitions of Rayleigh number and Taylor number. In all the figures the numerical
values of (T,), for N = 0 and A = 0 can also be compared with results of Sparrow et. al. )
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Fig. 1—Variation of critical TayloriNumber (7*), with N for Fige 2—Variation of critical Taylor Number (T%).
n = 0-95, p 0.45 and various values of A and Pr, with N forq = 0:95, p = —0:2 and in
various values of A and Pr,
" =e= P s .0
- P': 7.0 ‘ :
&k \ |
(Mz20.75,450.28 |
b
s 21,0
L1
r=0.0 ' «e-P=7.0
& 1
‘\ L (M=95,420.2)
] |
- N
~_ ™
= T -
D W
[ 1
-60 -30- O
N N

Fig. 3-~Variation of critical Taylor Number (7*). with N for; Fig. 4—Variation of eritical Taylor Number (7'*), with N
(a) =075, p = 0-28; (b} —5=10.5, u = 0-125and for = 0-5, u = 0-2 and various valuesof Aand Pr.
various values of A and Pr. )
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In general it can be concluded from figures 1 to 4 that theinjection of fluid at the outer eylinder promo-
tes aninhibiting influence on the instability of the flow in the presence of adverse temperature gradient
while in case of positive temperature gradient it tends to destabilize the flow. On the other hand suction
from the outer cylinder produces the reverse phenomena. Furthermore it is observed that stabilizing or
destabilizing effect of the radial velocity increases with the increase in the -|-ve or —ve values of N. The
effect is minimum in the neighbourhood of N = 0. Another important observation is that for wider gap
ratios of the cylinders (y = 0.75 and 0.5), as the value of P. increases from1 to 7, the radial velocity

becomes more important and largely contributes to the stability or instability of the fluid. This is well
exhibited in Fig. 3.
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