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Freefconvection: ow- from em infinite disk; when both the disk and the surrounding fluid rotate with the same
angtlar velocity about the same vertical axis has been considered. The disk is'maintained at an axisymmetrie
nontmiform temp@rature distribution which oscillates about a steady nonzere mean. The . temperatute of the
fluid at large distance from the disk is taken to be constant. The problem is formulated for small values of the
reduced frequency whicllds the ratio of the frequency of oscillations of the temperature of the disk to the
angular velociyy of the fluid. The equations are integrated by Ka'rma‘n-Pohlhaulsen method for s fluid of Prandsl
number unity. The solistion holds good when the Rossby number and the reduced frequency are Gf the same order.

It has been seen by Srivastava & Bhattacharjee! that if a disk rotates'with a constant angular velo-
city £ about an axis perpendicular to its plane in a fluid which is rotating at infinity with the same angular
velocity about the same axis and if the disk is maintained at an axisymmetric nonuniform’ temperature dis-
tribution with a minimum at the point of intersection of the disk with the axis (pole), then a special type of
free convection flow occurs. In this paper we have extended the above mentioned problem, when the axis-
symmetric nonuniform temperature distribution of the disk performs oscillations with frequency w about

. . . -~ -

a steady.nonzero mean. Using Lighthill’s? technique we have written the velocity field ¥ as ¥ —_:-_])7‘ + e
- : . . '

Vjeiot and the temperature distributionas ' = T, -+ € Teiot and retained only.the first power of e

: S - S > >
for the fluctuating part of the velocity and the temperature field, where V, , Vs, Ty and Ty are independent
of time. o o

The steady flow has been discussed in detail in'. Using these solutions the fluctuating part of the
and the temperature field has been obfained for small values of the reduced frequency A’ (= w/Q)

gquations of motion have been integrated by Ka'rma’n-Pohlhausen method for a fluid of Prandt] numbes
‘unity and for small Rossby number. It is seen that the solution holds good when A and the Rossby g,

are of the same order.

EQUATIONS OF MOTION

Consider a disk, 2 = 0, rotating with a constant angular velocity Q about an axis perpendicular
to its plane and a viscous conducting fluid filling the space z > 0. The fluid at infinjity is also rotating with
a constant angular velocity £ in the same sense as the disk and about the same vertical axis.' Tiet acylin-
drical polar coordinate system (r, 8, 2) be fixed in the rotating disk with the origin at the point of inter-
seqtion of the disk-and:the axis of rotation, and with the z axis pointing vertically upwards. The disk
18 maintained at-a temperature ' ) ‘

Tw =T+ (T* —Ty (1 +ecosai) 5 = (1)

\‘:”‘ﬁnd the fluid at #z = o0 is maintained at a constant-temperature ', where T, is the constant temperature
at the pole, T* is the mean temperature at r= (»/2)hv  is the kinematic coefficient of viscocity
and ¢ is time.c. The.peint of intersection of the disk and the axis of rotation is named as pole. (T* — T)

is very small so that 7'y doés-_ not exceed T, in the region under consideration.

Taking Boussinesq appfoximation for density variation and Wﬁting.
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where P is the pressure in the fluid, d is the distance of a particle of fluid from the axis of rotation and pro-
ceeding in the same way as inl, the equations of motion can be written as

u qu |, u v?
3 Fou o s = — 290
_8; { 3 L 2y _a_ - 1} @)
R R { e ;’f ]+.sra(?‘—'rou @)

where u, v, w are velocity components in the directions of r, 0, 2 respectively:

The equation of continuity is

U o 9w
ar’ + 7 + » 0. )
Neglecting the viscous dissipation the equation for the temperature is given by
YA 51 57 [ 22T 1 9T 27
= '3 e U .= - W —— IL ( -3 + e 3__ _}_ ‘-__2_) (6)
ot ' 32 a roar ar

where K is the thermal diffusivity.
' The boundary conditions on the velocity components and the temperature are given by
u=v=w=0 atz=0; u->0, v>0asz—> . ()

and

| 4

720
T=Ty+ (I'* — Ty (1 + ecos w?) at 2=0 } ®)

S U A 8% >
ety T &

Similarity Transformation
In view of the boundary conditions (7) and (8), we assume the following similarity transformations

F (¢t pa—
U=99 Ca £§ ']- ,0=rQ@G (¢ 7), !UZ—Z'\/P.QF(E,T)

T— T, pQ
'],v-:;;_ ],r_ = (‘f- Ty it = r;‘!’(g- T)a (9) '

0

v

where £ =2 (2/v)t and 7+ = wt. Following Lighthill’'s® method of analysis, we write

F(&r) = Fo(d) + eFi()er

- G7) = Go(d) + eGr(f)e %

V’i X(f: 7) = Xo (£) + €1 (f) eir A (10)
p(1) = SO + ed¢y (§) e
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Thus u, v, w and T' are taken as

uw=rQ [Fo’ (&) + e F,' (&) 6"] S (11)

v=71Q[6 (§) + G (£ e (12)

. w=—2/,0 [F, (¢ + ¢ F, (§) 67] (13)
. 2 ’

%%:%%=ﬂm@)+en@wﬂ+—’f.wwr+eh@wﬂ (14)

where a prime denotes a differentiation with respect to £. We assume the following form of the pressure p

e L

Po® Fem (& |+ 2L By e B @ || (15)

The functions Fy, Gy, Py, Py, xo» and ¢, arereal but the fanctions F,, Gy, #;, Py, x; and ¢, are
complex.

The boundary conditions in terms of the new variables are

) ] : Tyw — T 16
Fy=G=F'=6G=x1=¢=%,=0, xo= TO:_Too o

‘= S83¢ >

Fo=Fy =Gy=F,=F'=x=x1=0, ¢y=¢=1at¢{=0. }

Substituting these expressions for u, v, w, p and T in the equations (2) to (4) and in (6) and eliminating pres-
sure terms from (2) and (4) we get the following equations (neglecting squares and higher powers of ¢ ).

Fo" + 2 (Fo By + GoG) + Gy) = 2B 4, (17)

\ - 2 (Go Fy — Fo Gy + Fy) = Gy (18)
20 (hFy — Fody) = ¢’ | (19)

X0 + 4 (g + 20 Fyx) =0 ‘ _ (20)

A F F = —py —2F + Bxo | (21)

P =B ¢, (22)

— AP+ F" +2[F, F\" + F, F" + GG + G, Gy Gl =284, (23
AiG +-2(G F +G F —F,6' —F, G/ +F') =6 o (24)
Aiox, —20 (Foyx, + Fyx0) =4¢ +x (25)

Aiod, +20[ (o F) + ¢ Fy) —(Fod) + F16)] = ¢, (26)

— 29AF, +4(FFY + F, F)) = — p/ —2 F," + Bxy @7)

' P = B4, ' (28)

where o = v/K is the Prandtl number, B =ga (T* — T,)] Q 4/v2 is the. Rossby number which is
small and A = w/Q is the reduced frequency.

SOLUTION OF THE EQUATIONS -

The equations (17) to (22) give the steady flow created by the non-uniform axis-symmetric and steady
temperature distribution of the disk. These equations have been integrated by Kramén-Pohlhausen method
for a fluid of Prandtl number unity and discussed in detail by Srivastavaand Bhattacharjeel. The in-
teraction of the steady and the fluctuating flows is governed by the equations (23) to (28). Using the solu-
tions of (17) to (22) (see reference 1) we have determined the fluctuating part of the flow for small values of
the reduced frequency A. We expand the functions F,, Gy, x, and ¢, in powers of (d).
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Fi(§) =fo(§) +Afi (6 +
Gy (§) = 9o (§) + Ay (8) +

¢y (€) = ho (£) + Dy (&) + (29)
x1(6) = g (€) + WA q (¢) +

Substituting the series (29) in the equations (23) to (28) and equating real and imaginary parts on both sides
of the equation, we get the following sets of differential equations :

S F2(Ffo" +fo Fo” + Gotd + 90 Gy + 90) = 2 Bh, (30)
2GS 0B — R’ —fo Gy + f) =g , (31)
% (Fyai' +Foxs) + 4o+ 4" =0 T @
20 (Bofo’ + o B — Fo by’ — fy ') = y" e (33)
and
A" —fd" + 2" + A B A Gogy' +9, G’ +9/) =2 g, ' (34)
2@l Hu B — oy’ —f 6 ) =g S @)
o lto—2 (Fo 0’ + o x)] = 4hy + gy (36)
o lhy + 2 (hofy' + Iy Fo' — Foly' —fy ¢ =h' - (37)

Where we have neglected squares and higher powers of A. The boundary conditions (16) can now be written
as ‘ .

fo=f=fH=fR=%=0h=¢ =q=h =0,k = 1 até =0 } 38
h=h=%h=t=¢%=0=h=hh=0a >0 o ( )
The equations (30) to (33) give the quasi-steady solution f,, ¢o, gy, ko, While equations (34) to (37)
give the first approximation in A to the fluctuating components f,, g, , ¢, and 4,. These equations
can be integrated by any numerical method. We have integrated them by Karman-Pohlhausen
method for a fluid of Prandtl number unity in which case the thickness of the velocity and temperature
boundary layers become equal, say 8§ = D (v/@)# . Let » stands for the variable 7 = ¢/D and suppose
M (§) = M (4D) = M (n). We assume the following polynomials for fj’ , g; , ¢; and hi, 7 =0,1.

D, (&)= :J?;g = (dgy + By %) (1 — n)d (39)
fo O =gl =Coln+a)(L—mp T
ho (6) = holn) ={1 +Bon+ 4B, —6) 92} (1 —n)t (41)
G () = o) =042+ SB)y+ {(4(4y+ SB) — 2D} 2] (L—mt (42
af, :
f 0= B0 — 4yn By 1 | 43)
9O =T () = Cy(n X 497 (1 — )t | (44)
hy () = hit)={Byn+ (4B, + 3 DY 2} (1 — gt (45)
9 () = g1 (n) = (45 + 8 By) (7 + 4 7) (1 — q)* (46)
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The values of the constants Ag, By, Cy, By, 4q, Bs, 44, Bl, 01, E,, 4;, and B; ate gIven in Table 1 fv)r
B =0.1,0.2,0.3.

TaBLE 1

VALUES OF DIFFERENT CONSTANTS FOR VARIOUS VALUES OF B

g=0-1 B=0-2 B=03
D 8 -6089 71126 /61721
—A4, 97508 103121 9 -8501
—B, 33 -5747 33 0993 28 0560
—C, 0 -0457 0-1972 03344
—E, 01501 00336 0-1692
4, 327783 23 4913 18 10880
By 06832 0 -6420 06055
4, 13 8524 80302 52147
—B, 41 -4550 14 7485 80117
—0, 0 6041 01686 00102
—E, 2 4720 2 0906 1-1611
—A, 20 -8476 18 4335 8 7850
—B, 18157 08975 06812

DISCUSSION

The variations of f,' and f," against ¢ =z (2/v;? have been shown in Fig. 1 for 8 = 0.2, 0.3. The
variations of — g, and — g, against ¢ have been shown in Fig. 2 for 8 = 0.2, 0.3, The solid lines
indicate variations of f,’ and — g, whereas the broken lines indicate variations of f," and —g,. The order
of magnitudes indicate that A (= w/Q2) should be sufficiently small and should be of the order of B, so that
the series (29) converge. The heat transfer per unit area from the fluid to the plate is given by

al S _ R
U= ,{-_[ >3 ] = k(2 (T*—T,) {X;} () + ex (&) e ]]> +
< z == L J
0 ( ) ]
—— &' (&) (&) et b "
5 {{ﬁu (€) + e, (&) ¢ | ‘ (47)
.06
_ ot i
dj 0.05/ \
df \
= . p=0.3
: 'llll - ‘3:\\
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Fig. 2 — Variations of —g, and —g, against &

%
Fig. 1 — Variations of o and against £=2( Q!h-]‘
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where k is the thermal conductivity of the fluid. The oscillatory part of the heat transfer per unit area is
given by ,
L
e =g @ (10 1) [ { s+ 5B) £ iy + 5By |+
2 Q }

+ 5 { m—yriag e (48)
The oscillatory part of the nondimensional rate of heat transfer from the fluid to the portion of the disk
having radius 7 = B (v/Q)} is given by . _

T

!_ Qosc ]r = J ' ( Qosc) 2mrdr ] / T (o[22 (T* — Ty k = Mg cos(r —P)

1

where

Mr

L

¢ R2 ‘ [ | 2 ( 24

D *; (dg + S B: ! _ R? (E 4% L Avd 4.8 ‘“:‘. _u R:E. ."_ 1°

3

tan¢=~\w (43 + S By) + } B2 E, / <A2+SBz>+%R2(Eo—4)}}

1t is seen from (48) that for R < R, where B2 = (4, + S B,)/4 E,, gosc has a phase lag and if R exceeds
R,, this phase lag jumps to a phase lead, i.e., for R > R, heat is transferred from the disk to the fluid
which will lead to the thermal instability. This shows that the solution holds good in the region R < R,.
The values of R, are given by R =13-134, 12-951, 12-758, for 8 =0-1,0-2, 0-3 respectively. In all the
calculations we have taken §=1000. Taking A = 0-1, the values of ® for R=5,8,10, 12 and §=0-1, 0:2,0-3
have been given in a bivariate Table 2. It is seen that @ increases with the increase of R and decreases with
the increase of 8. Taking € = 0-1 and A=0-1, the values of Mpagainst R have been plotted in Fig. 3 for
various values of B. It is seen that M pincreases with the increases of R as well as with the increase of B.

900
TaBLR 2 —
BIVARIATE TABLE OF (b FOR VARIOUS VALUBA OF R AND 8 o
(IN DEGREES)

R B=0-1 =02 B=0-3
5 15 -6950 7 -8569 8 -9557

18-1914 8 -6986 8-2391 .

10 21 -0791 10 -3699 97976 :a
12 25 -7802 12 -2976 12 -1562
| t =
ACKNOWLEDGEMENT
T am thankful to Prof. A.C. Srivastava, for his
valuable help during the preparation of this paper. /

Fi1. 3—Variations of the amplitude of oscillations of the heat
transfer against dimensionless radius R = r (Q/v)!/3,
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