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The strength of the shock in-& thermally radiative gas has been calculated for the steady flow of gas under
the condition that the gradient of total pressure vanishes on the flow side of the shock.

Verma and Mishra! have derived jump relations for thermally radiative shocks in plasma. Using com-
patibility conditions of Thomas?, propagation of thermally radiative shocks has been discussed by Ojha &
Vorma? under certain boundary conditions. The strength of the shock has been derived by many authors
e.g., Kanwal; Pant & Mishra® in the presence of dissipative and non-dissipative mechanisms and in ab-
sonce of thermal radiation. Our aim in this paper is to derive the density shock strength in a thermally radia-
tive gas. For simplicity we have taken steady flow of gas and stationary normal shocks in course of deriva-
tion. We have assumed that the gradient of total pressure vanishes on the flow side of the shock so that

K
-a—a%— — 0 and Thomas® compatibility conditions have been used.

SHOCK CONDITIONS AND STRENGTH OF THE SHOCK

Equations of conservation of mass and momentum for steady optically thick radiative gas flow (Paif)
using Thomas? equations (7T & 9) yield

PAy +un - A=0 1)
o N b s [P*).a 23, L. B; =0 (2)
whete
£=1lp, i m; N=1[uglnj; p=[p*]m ()
A =u%pa+t P we,,; Uira (4)
and
B; = puj g via 5= pUS e (5)

The shock conditions across the shock sufrace

g=w (go) 6=1,2,3; a=1,2)

are
[pup) =0 (6)
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ps Uyn [w] = _[ ‘f%f_]n'.

’ 4
[ (% i h g 4;,? | = & iy +

where

b= 22
~pD)

(7N

(8)

(9)

and x; are cartesian co-ordinates, 4% are curvilinear co-ordinates and a comma (,) indicates partial differen-

tiation with respect to curvilinear co-ordinates. Assume that the shock strength ¢ is defined by

Lo}

$="p

Then we have

Uy N4

B ] ’I‘
==y

al* 1 & N
p + 3 = (1 + ¢)P1 Ugn
From equation of state, we have
[p, 5] =R {T [p, 4] + p [T, 1]}

Thus

4a

78
(7,1

[p%,d]m = R{T [P, 4] + p[T,s]} m+ —

. : e p* : . ‘
By using the boundary condition w _ 0 as well as the equation (1), (2), (4) and (5) we get
, T pUS Uisa M }
T, 0l (0 = ——mm———r T
[T, ¢] % Pty (1 4 4Rp) Yn
where
aTt
R, =
3p
Also we can write (8) in the form
aTh

[URERE
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where

K*=(‘K+

4aDT3
)

and is called the effective condutivity due to radiation.'EIiminaﬁing ‘[T;i] n; between (15) and (16) we get

‘ U I
a4 PII"’“‘B Uisa T, E_ Uiy N |

. et
N PUn (1 + 41{2’) T

which is a first order differential equation in p.and y® that can be solved in principle. For simplicity
consider the stationary normal shock for which, u% == 0 -

T T .
Uisa = [U),a = (1+¢) Uyn M50 (1 T+ ¢u1n),ant (19)
1 R J_____ at 2 L p
pop.— PP U%@(l t ¢) S
~ ' R(144)p, (1+4¢)p R
[ » ] _ 1 o % B
p 1l Q4R (1p92 " (1id) py

and

. Ui -
Up == Upp = (T__

+ ¢)

Also, we have

—$(2+¢) ,

I3 ) = 4 (l] D] + 2 [l = -5 (ot

Now making use of (18) to (23), we get

I © (IM q{i L ,M -2, — (.2 ]
4o _ lpua(-dR) NE "14 R, " 70|
P ziﬁ*,ﬁm”(" e + Cli) 4 (R uz, +C2
. Py %yn (1 + 4Rp) R (1  Ry) NE )t %l

where
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