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~n this paper the propagation of explosion waves, in a conducting gas, prQduced on account of a point explo-
sioh into inhomogeneous self.gravitating gas spheres is considered. Radiation effects have been taken into account
and the density of the gas is assumed to vary as r-a, r being the distance from the point of explosion. In order
that the mass and pressure b~ positive in the equilibrium state, the choice of a is restricted between 1 and 3.
The variation of Mach number of the shock and energy of the wave with time have been taken into considera-
tion. ~cc

.Kynchl ~nd Taylor2 have studied the propagation of spherical shock waves by assuming the undistur-
bed dep.s;ty to vary according to some inver3e power of the distance from the centre of explosion. They
neglected the counter pressure and used similarity concept& to obtain the solution. Taylor's well
known problems solved by himself, by numerical methods comes out to be a special case of the a1:ove
problem. But if counter pressure is also taken into account the problem no longer remains self-similar
a~d numerical methods have to be employed to obtain the solutirn. Therefore when Sedov4 took
into account counter pressure, he assumed uniform density in the undisturbed state and thus avoided
the use of numerical meth@ds. Verma5 studied in conducting gases the propagation of a cylindri-
cal shock produced on account of instantaneous energy release along a straight line by assuming
the density of the undisturbed state to vary as r-a, r being the distance from the axis of explosion.
On accoutl.t of their considerable importance and applicability in defence sciences and high speed flow,
we have attempted to consider the propagation of explosion waves, in a conducting gas, produced on
account of a point explosion into inhomogeneous self-gravitating gas spheres. Radiation effects have been
ta~en into account and the density of.the gas is ~sumed to vary as r-a, r being the distance from the poip,t
of explosion: In order that the mass and pressure be positive in the equilibrium state, the choice of oc is
restrictEd between 1 aJ:ld 3. The variation of Mach number of the shock and energy of the wave with
time have been taken into consideration.

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The equations governing the magnetogasdynamic flow behind a spherical shock in a self-gra-
vitatingsystem including radiation effects are
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E=EM -t- Ell , P=PM+ PR

PM 3pR PAEM = I , ER = -, E4 = -(6)
P\'1-1) P P

and the variables u, h, p, P are velocity, co!llponent of magnetic field, pressure and density of ,the gas
respectively at radial distance r; m denotes the mass of the gas within a sphere of radius r at time
t, G the gravitatiol\3l constant and '1 is the ratio of the specific heats.

The sufues M, R, h attached to a symbol denote expressions for material, radiation and magnetic
terms respectively.

The radiation flux F is giv&n by

(7).F--~ ~
-EP dr

where C is the velocity of light and E is the coefficient of opacity.

PM = ZP , PR = (1 -z) p , (0 < z < 1)

so that

(8)

(9)

pE = p(r-=1) ,

where r is called Klimshin's coefficient given by

r = 4(,,-1).+:,!:(1- 3,,) .

3(" -1) 1f-~z(4-"-' 3,,)

The motion is boundcd cn tho outs:de by a Bhcck surfaoe r = R (t) m(.ving outwards w:th a velocity

V = ~ .As usual, we denote the quantities in the undisturbed region ahe.ad of the shock by

suffix 1 and in the region behind the shock by suffix 2, so that the generalised Rankine-Hugoniot shock
conditions as given by Whitham6 become

'{10)

{11)

P2=Pl1>

h2 = h1,1>

U2 =:(~) (12)

~

, 2'<1> -1) (
}P2 = Pl-+ (r + 1) -(p.--,-I)<1>\rpl +, (r-l) h12 «1> -1)2 (13)

where

~

,2", [ {( r ) r }]V2 = (r -I= 1) -(r ---1) "' a12 + b12 1 -2 "' + 2 ' (14)

a12 = ~ pPl is the ordinary speed of sound and, b12 = ~ "is the Alfven velocity. According to our
1 PI

assumption the density in front of the shock, in the undisturbed state is given by

(15)PI(r) = ,8r-a ,

where fJ is a constant. From (I) the equilibrium pressure is obtained as

~ ( -3P! h ~
PI 3'1 + I ~r

Gm1
+~ =0, (16)

.16



--, .
VERMA & SINGJt : Spherical Magneto Gas Dynamic Shock in Radiative Gas

where

(17)
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3 -CX)

-V2} ,

hwhere v= --.
,p

In order to make m, (r) positive, the equation (17) imposes the restriction

3 -IX > ('),

whereas to make PI positive, the equation (18) gives

<oc<3

and
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With the h'31p of the equation8 (2), (3) and (8), the equation (4) can be written as
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SIMILARrTY TRANSFORMATIONS

We now s8ek similarity solutions of equations (1) to (4) by making thefollowing transformations

u = rt-l U('I'J)
c

p = rk t.. .Q (7])

h = r(K + 212) t(..~2/2) H(7])

p = rk+2 i-2 'P(7])

m = rk+S t.. Z('I'J)

~i:F - r k+S t ..-S
F( ) £!IJ
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where

~ = rU tb .(29)

The parameters K, '1), a and b are at present froo but shall later be fixed according to the requirements
of the problem. Let the shock surface be given by

'171 = A t(U

where .A and (I) are constants. The velocity V of the shock surface is then given by

V=~R
a T
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From the equations (1) to (5), it can be seen that
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where11 ('1)),12(1]),13(1]) and 14(1]) are expressible in terms of 1], P(1]), .Q (1]), U(1]), H(1]\, Z(1]) and F(1]).
Supposing now'

we have

~~~
cg- a

and then, as a consequence of the equations (33) and (35), we write

E = tn-2-bla(K~2)f(7)), (37)

so that
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1!rom (36) and (39), we may take, without any loss of generality K =0, n = -2, a = -5, b =4.

Substituting these values of a and bin the equation (31), weget

4 'R
-,w

V=~- t

In order that the disturbance may be characterized by an outgoing shock wave, we should have

(J)<4

.v '
( 'b )DefiI1\ng the Mach nurober M at the shock wave by M = -and another nurober MA MA = -!

al al
using the equationS" (15), (18), (29), (30) and (41), we obtain

and

(a + 2)
5

a(4- w) -2(1 +mr0-' ,
MA2 (4- W)2 (43)A

25 ,8 v'a

which shows that M is a function of time and in particular, ~ decreasing fun cti?D if

-2 (I + w)

M2= ; t

a< c
4-((/

which in tegrates to

y3
t -E = y (t),

where Y(t) is calculated from the conditions on the inner side of the shock surface. Assuming equilibrium
conditions at r=R, and

41T G ~2
R2<t-l«t-lr(3:::.--<t) ,-up

)dr r=R

we have

where we have assumed that

4'IT G R2"v" =
«<-1) (3-«)

The equation (46) shows that y (t) = 0 when « = -f, Z = 1 and then t~e equations. would admit analy-

tic solutions. But, the condition Z = 1 corresponds to the non-radiative caSe which is different from the
problem treated here. However, when y (t) is small, its smallness depending not on IX but 'on the factors

,8 and A occurring in the relation

B =-A-l/0 t(4-£11f5) ,

the values of p, p and u can be obtained in the present case also.
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SOLUTIONS OF. EQUATIONS
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respectively.

When Y(t) ~ 0, the eq6ation (45) gives
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F

wh6r6 " = -V, 9 = i and use has been made of the relation (41). Solving for-; with the help of

(50), we get

p [ 1 V2 r-,,- 1 { } { ~ }-= ---4g-,\(4-w) rg,\2M2- 4«;t-l),11--2r((X-l)I1-MA2 - p 2 M2 r , ,

where 11. = ~. With the help of (2), (4), (22), (47) and (48), we obtail'. an equation which integrates to
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Further from equations (3) Itnd (49), we obtain an equation which int6gra.tei to

-I( 4:-(11 )h = D~-2 4: " --~
g(~)

where D i8 a function of tim6, and

~
3

logg (~) = T

1
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t
From (53) and (55), we ~e that the singularity in our lolution is given by ~ = "

id611tified with the inney boundary of the wave.

, 1t'hioh can be

I N N E R "8 O U N 1;> A R y A N.D E N EjR G YO F T H E W A V E

When

f=A4-w 4

we have

~ -~ -.!:!..

dt -6 t

which on integration give8
t' rl-5 = oonstant ,

wher8 11 is the radius of the inner boundary. In terms of'TJ' we hav8

111 = rl-5 ti = con8tant

In equilibrium, the original gtavitational, magnetic and heat energy of the gall enclosed within a radius
equal to the radius of the shock is given by

R

477 I
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.877'! .8~ G (3- 2~) R5-~O.
r2 dr = ' -

(3- ~) (~ ---1) (5- 21X}
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When Ot = 312 but n(jt equai to 5/2, the ab9ve expression vanishes showing that the original energy of the
gag ig zero. Hence, we have to n1ake a continuous set of explosions in order that the energy of the wave
may vary as it progresses. After the explosion, the total energy T of the configuration is given by

'10

4;f

'11

p
GzQ ] "1-2 d"1 (51)

[ 1 H2
-Q U 2 + -'--=- i ---'-'"

2r-1T 2
T=-

where 770 and 771 are the valu6s of 77 at the shock front and on the surface of the inner boundary respec"
tively. Since 771 has been s~own to be constant, it is easily seen that T is a function of 77uonly. But
by assumption, 770 = Atw and hence T changes with time. By taking iJJ suffioiently small, the energy
can be JDade to inorease or decrease with time at a reasonable rate. When w = O the total energy is cons
tant.
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