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In this paper the propagation of explosion waves, in a conducting gas, produced on account of a point explo-
sion into inhomogeneous self-gravitating gas spheres is considered. Radiation effects have been taken into account
and the density of the gas is assumed to vary as r—2, r being the distance from the point of explosion. In order
that the mass and pressure be positive in the equilibrium state, the choice of a is restricted between 1 and 3.
The variation of Mach number of the shock and energy of the wave with time have been taken into considera-
tion. LR C :

Kynch! and Taylor? have studied the propagation of spherical shock waves by assuming the undistur-
bed density to vary according to some inverse power of the distance from the centre of explosion. They.
neglected the counter pressure and used similarity concepts to obtain the solution. Taylor’s well
known problem? solved by himself, by numerical methods comes out to be a special case of the atove
problem. But if counter pressure is also taken into accountthe problem no longer remains self-similar
and numerical methods have to be employed to obtain the soluticn. Therefore when Sedov? took
into account counter pressure, he assumed uniform density in the undisturbed state and thus avoided
the use of numerical metheds. Verma® studied in conducting gases the propagation of a cylindri-
cal shock produced on account of instantaneous energy release along a straight line by assuming
the density of the undisturbed state to vary as r—¢%, 7 being the distance from the axis of explosion.
On account of their considerableimportanceand applicability in defence sciences and high speed flow,
we have attempted to consider the propagation of explosion waves, in a conducting gas, produced on
account of a point explosion into inhomogeneous self-gravitating gas spheres. Radiation effects have been
taken into account and the density ofithe gas is agsumed to vary ass—¢%,r being the distance from the point
of explosion. In order that the mass and pressure be positive in the equilibrium state, the choice of « is
restricted between 1 and 3. The variation of Mach number of the shock and energy of the wave with
time have been taken into consideration. - -

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The equations governing the magnetogdsdynamic flow behind a spherical shock in a self-gra-
vitating system including radiation effects are -
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and the variables u, h, p, p are velocity, component of magneticb field, pressure and density of the gas
respectively at radial distance r; m denotes the mass of the gas within a sphere of radius 7 at time
t, G the gravitational constant and vy is the ratio of the specific heats.

The suffixes M, R, h attached to a symbol denote expressions for material, radiation and magnetic
terms respectively.

The radiation flux F is given by

. d
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where cis the velocity of light and e is the coefficient of opacity.
' pu=2p,Pr=(1—2)p, (0<2z<1)
so that
i U (8)
where I' is called Klimshin’s coefficient given by
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The motion is boundcd cn the outside by a sheek surface # = R (¢) mcving outwards wth a velocity

dR ) '

V= a7 As usual, we denote the quantities in the undisturbed region ahead of the shock by

suffix 1 and in the region behind the shock by suffix 2, so that the generalised Rankine-Hugoniot shock
conditions as given by Whitham® become
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a2 == s the ordinary speed of sound and, 5,2 = o 18 the Alfvén velocity. According to our
1 1 .
assumption the density in front of the shock, in the undisturbed stateis given by
Pir)y = =% , (16)
where B isa constant. From (1) the equilibrium pressureis obtained as
1 {am h Gmy
7)1—('3; +h 5 | +— =0, (16)
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where
,
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The equaticn (16) then intes ates to
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~ In order to make m, (r) positive, the equatidn (17) imposes the restriction
3—a>0,
whereas to make p, positive, the equation (18) gives
<a<3

and
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With the h-lp of the equations (2), (3) and (8), the equation (4) can be written as

P ap ou )y (D=1 9 o,
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SIMILARITY TRANSFORMATIONS

‘We now seek similarity solutions of equations (1) to (4) by making the following transformations
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where
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The parameters K, s, aand b are at presént free but shall later be fixed according to the requirements
of the problem. Let the shock surface be given by

n=A4t
where A and w are constants. The velocity V of the shock surface is then given by
w—b R

V=
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From the equations (1) to (), it can be seen that

9E
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where f; (1), fo(n), fa(n) and fy(y) are expressible in terms of », P{y), 2 (y), U(x), H(n\, Z(n) and F(x).
Supposing now _ .
b ) 2b
—2—— (K +$2) = 2n ——— (K + 1),
(1 a
we have
na2 b
K T a
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E = {"—2—0bja(K—2)f (y), (37)
50 that
ok S ) , b . / B b r gF
PV B s k+2) §1 ot ar
Supposing
b 36
n 2 — o4 A) = —
4 ¥
L
we have
// " — 2
= (39)

118



Veri4d & Sivel : Spherical Magneto Gas Dynamic Shock in Radiative Gas

From (36) and (39), we may take, without any loss of generality K=0, it = — 2, ¢ = —5, b =4,
Substituting these values of ¢ and bin the equation (31), we get \

4—w "R
t

Ve—e—9

In order that the disturbance may be characterized by an outgoing shock wave, we should have
o <4

Defining the Mach number M at the shock wave by M = aZ and an\other number M, (M 4 - -ﬁ) and
1 , a :
using the equations (15), (18), (29), (30) and (41), we obtain !

(a+2)  o(d—w)—2+w)
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which shows that M is a function of time and in particular, a decreasing function if

< 2(1+ w)

4—w °

From theaquations (32) and (38), we have, on using (40)

3 pul+hN=" (=L F
o e+ ) = . B

which integrates to

4 -2
2 (ul + F) - B i B =Y (1),

where ¥ (f) is calculated from the conditions on the inner side of the shock surface. Assuming equilibrium
conditions at r=R, and

dp B im G B2
(ET)HR = R 1(¢—1)(3—a)’

we have
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where we have assumed that

4=} R2
(¢—T1)(3—a)

The equation (46) shows that Y (t) = 0 when « = %, Z = 1 and then the equations would admit analy-

tic solutions. But, the condition Z = 1 corresponds to the non-radiative case which is different from the
problem treated here. However, when Y (f) is small, its smallness depending not on « but on the factors
B and A occurring in the relation ' :

9

vi=

R = A1/ j(4—w[5)

the values of p, p and u can be obtained in the present case also.
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SOLUTIONS OF EQUATIONS

The condition inside the wave is obtained from the solution of equations (1) to

) (4). From the equa
(24) to (26), (39)and (40), we get
3p _ _ o ; ! r ap
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respectively.
When Y () % 0, the eqflation (45) gives
A= & = F
4w I
r
where A = —?/—, ¢ = 5 and use has been made of the relation (41). Solving for % with the help
(50), we get
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where p = %1 - With the help of (2), (4), (22), (47) and, (48), we obtain an equation which ifitegrates to
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log f(¢) =- j (I' —1) J;T:_‘; A (53)
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Using (51), the equation (52) yields
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Further from equations (3) and (49), we obtain an equation which integrates to

4 o

h =D ( A ¢ )“Ig(a

where D is a function of time, and

From (53) and (55), we see that the singularity in our soldtion is given by ¢ = A —4—:--0-)—- , which can be

identified with the inner boundary of the wave.

INNER BOUNDARY AND ENERGY OF THE WAVE

When
4—w
§=2A 1
we have
an _ 4 n
& 5 ¢

which on integration gives
t4 1,75 = constant ,

where r, is the radius of the inner boundary. In terms of 5, we have
7 = 1,3 t* = constant

In equilibrium, the original gravitational, magnetic and heat energy of the gas enclosed within a radius
equal to the radius of the shock is given by

R -
P J’:l{ - 7(’1‘”’“1 Py ] 2 '__ 871': B G} (3 — 2a) R5—0
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0
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When o = 372 but not equal to 5/2, the above expression vanishes showing that the original energy of the
gas is zero. Hence, we have to make a continuous set of explosions in order that the energy of the wave
may vary as it progresses. After the explosion, the total energy T of the configuration is given by

- 71 . He .
T

where 7, and 7, are the values of 4 at the shock front and on the surface of the inner boundary respec-
tively. Since 7, has been shown to be constant, it is easily seen that T is a function of 9, only. But
by assumption, 7, = At» and hence T changes with time. By taking » sufficiently small, the energy
can be made to increase or decrease with time at a reasonable rate. When w = 0 the total energy is cons
tant. ' ' ‘ ‘ '
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