A PROOF OF THE PUISEUX - HALPHEN INEQUALITY IN THE THEORY OF SPHERICAL PENDULUM BASED ON AN INTERESTING IDENTITY OF S. RAMANUJAN*

(Miss.) V. Ramamant
Electronies and Radar Develonment Establishment, Bangalcre

(Received 22 January 1976)

Abstract

The classical problem of finding bounds for the apsidal angle in the case of the spherical pendulum -has been considered by Halphen in his classical treatise on 'fronctions Elliptiques'. His proof is bseed on certain inequalities among Elliptic-function constant: We prove these inequalities of Halphen and Puiseux, in a simple way, using an interesting identity of S. Ramanujan , besides, we obtain positiveterm series for the quantities involved which may enable one to improve such bounds.

In this paper we have established a connection between an interesting identity of S. Ramanujan and the famous classical inequalities of Puiseux and Halphen concerning the oseillatory motion of a Spherical pendulum. These inequalities relate to the problem of finding bounds for apsidal angle ${ }^{1}$. The proof given by Halphen ${ }^{2}$ is based on the following inequalities among elliptic-function-constants, when one of the periods $2 \omega_{1}$ is real and positive and the other purely imaginary $(0<q<1)$:

If

$$
\begin{equation*}
f\left(\theta_{r}\right)=\theta_{r}^{2}-\eta_{1} e_{r} / \omega_{1}-g_{2} / 6, \quad r=1,2,3 . \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
f\left(e_{1}\right)<0, f\left(e_{2}\right)>0, f\left(e_{3}\right)<0, \tag{2}
\end{equation*}
$$

where $e_{\%}(r=1,2,3), g_{2}$ and η_{1} are constants associated with We'erstrassian elliptic \dagger and Zeta functions ${ }^{3} ; P\left(\omega_{1}\right)=e_{1}, P_{\gamma}\left(\omega_{2}\right)=e_{2}, P\left(\omega_{1}+\omega_{2}\right)=e_{3}, \zeta\left(\omega_{1}\right)=\eta_{1}$.

The identity of Ramanujan ${ }^{4}$ from which we derive the inequalities (2) is $\left(x=e^{2 \pi i} \omega_{2} / \omega_{1}\right)$:

$$
\begin{align*}
\left(\frac{1}{4} \cot \frac{1}{2} \theta+\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}} \sin n \theta\right)^{2}= & \left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\sum_{n=1}^{\infty} \frac{x^{n} \cos n \theta}{\left(1-x^{n}\right)^{2}}+ \\
& +\frac{1}{2} \sum \frac{n x^{n}}{1-x^{n}}(1-\cos n \cdot \theta) \tag{3}
\end{align*}
$$

Written in term; of Weierstrassian functions, the identity (3) assumes the form ${ }^{5}$

$$
\begin{equation*}
\left(\zeta(u)-\frac{\eta_{1} u}{\omega_{1}}\right)^{2}-P(u)=\left(\frac{2 \pi}{\omega_{1}}\right)^{2}\left[-\frac{1}{24}+\sum_{n=1}^{\infty} \frac{q^{2 n}}{\left(1-q^{2 n}\right)^{2}} \cos \frac{n \pi u}{\omega_{1}}\right] \tag{4}
\end{equation*}
$$

where

$$
P(u)=\left(\frac{2^{\pi}}{\omega_{1}}\right)^{2}\left[\frac{1}{24}+\frac{1}{4}\left(\cot \frac{\pi u}{2 \omega_{1}}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{q^{2 n}}{\left(1-q^{2 n}\right)^{2}}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \cos \frac{n \pi u}{\omega_{1}}\right] .
$$

and

$$
\begin{equation*}
\zeta(u)=\frac{\eta_{1} u}{\omega_{1}}+\frac{\pi}{2 \omega_{1}} \cot \frac{\pi_{u}}{2 \omega_{1}}+\frac{2 \pi}{\omega_{1}} \sum_{n=1}^{\infty} \frac{q^{2 n}}{1-q^{2 n}} \sin \frac{n \pi u}{\omega_{1}} . \tag{5}
\end{equation*}
$$

[^0]By means of the identity (3) Ramanujan derives an interesting relation (identity (1) of Table 1) ${ }^{4}$ which is equivalent to

$$
\begin{equation*}
\frac{\eta_{1}^{2}}{\omega_{1}^{2}}=\left(\frac{\pi}{\omega_{1}}\right)^{4}\left[\frac{1}{144}+\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}-2 \sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}\right] \tag{6}
\end{equation*}
$$

Tr is identity is originally due to V.A. Lebesgue-and has been used by Halphen to give explicit solution in terms of elliptic constants to the system of differential equations

$$
\frac{d}{d t}\left(x_{1}+x_{2}\right)=x_{1} x_{2}, \frac{d}{d t}\left(x_{2}+x_{3}\right)=x_{2} x_{3}, \frac{d}{d t}\left(x_{3}+x_{1}\right)=x_{3} x_{1}
$$

which arose in connection with problems in mechanics and differential geometry.
In this paper we use the Ramanujan identity (4) to obtain the following interesting Lambert series for $f\left(\rho_{r}\right),(r=1,2,3)$:

$$
\left.\begin{array}{l}
f\left(e_{1}\right)=-2\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{4 n-2}}{\left(1-q^{4 n-2}\right)^{2}} \\
f\left(e_{2}\right)=\frac{1}{2}\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1+q^{n}\right)^{2}} \tag{7}\\
f\left(e_{3}\right)=-\frac{1}{2}\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{2 n-1}}{\left(1+q^{2 n-1}\right)^{2}},
\end{array}\right\}
$$

$0<q<1$ and ω_{1} are real and positive.
These relations evidently imply (2), and establishes bounds for the apsidal angle in the case of spherical pendulum and other related problems concerning the motion of a rigid body with one point fixed (Nonintegrable case).

We need the Lambert series of e_{r}^{2} and $\eta_{1} e_{r}(r=1,2,3)$ for the proof of (7); series expansions of e_{r}^{2} are well known and can be easily got from the relation

$$
\begin{equation*}
P^{\prime \prime}\left(\omega_{r}\right)=6 e_{r}^{2}-g_{2} / 2, r=1,2,3 . \tag{8}
\end{equation*}
$$

Now ${ }^{4}$

$$
\begin{equation*}
g_{2}=\frac{1}{12}\left(\frac{\pi}{\omega_{1}}\right)^{4}\left(1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}\right) \tag{9}
\end{equation*}
$$

Hence, we obtain

$$
\begin{align*}
& e_{1}^{2}=\left(\frac{\pi}{2 \omega_{1}}\right)^{4}\left[\frac{4}{9}+\frac{80}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}+\frac{16}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3} q^{2 n}}{1-q^{2 n}}\right] \tag{10}\\
& e_{2}^{2}=\left(\frac{\pi}{2 \omega_{1}}\right)^{4}\left[\frac{1}{9}+\frac{80}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}+\frac{16}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{2 n^{2}}}\right] \tag{11}\\
& e_{3}^{2}=\left(\frac{\pi}{2 \omega_{1}}\right)^{4}\left[\frac{1}{9}+\frac{80}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}+\frac{16}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3} q^{n}}{1-q^{2 n}}\right] \tag{12}
\end{align*}
$$

(In deriving these relations we have used the Fourier series expansions of $P^{\prime \prime}\left(\omega_{r}\right)(r=1,2,3)$, which are obtained by differentiating (5) twice w.r.t. u and putting $u=\omega_{r}$).

The Lambert series expansions of $\eta_{1} e_{r}(r=1,2,3)$, which are required in this connection are obtained by the use of the Ramanujan identity (4) in the following way; we prove:

$$
\begin{align*}
& \frac{\eta_{1} e_{1}}{\omega_{1}}=\left(\frac{\pi}{\omega_{1}}\right)^{4}\left[\frac{1}{72}+2 \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{1 n-2}}{\left(1-q^{1 n-2}\right)^{2}}-\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}+\right. \\
& \left.\quad+\frac{1}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3} q^{2 n}}{1-q^{2 n}}\right] \tag{13}\\
& \frac{\eta_{1} e_{2}}{\omega_{1}}=\left(\frac{\pi}{\omega_{1}}\right)^{4}\left[\frac{1}{144}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{2 n}}-\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q^{2 n}\right)^{2}}+\right. \\
& \tag{14}\\
& \\
& \left.+\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}+\frac{1}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{2 n}}-\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}\right] .
\end{align*}
$$

These are believed to be new.
Proof of Eq (13) : Changing uto u $+\omega_{4}$ in (4), we have

$$
\begin{align*}
& \left(\zeta\left(u+\omega_{1}\right)-\eta_{1}-\frac{\eta_{1} u}{\omega_{1}}\right)^{2}-P\left(u+\omega_{1}\right)= \\
& \quad=\left(\frac{2 \pi}{\omega_{1}}\right)^{2}\left[-\frac{1}{24}+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{2 n}}{\left(1-q^{2 n}\right)^{2}} \cos \frac{n \pi u}{\omega_{1}}\right] . \tag{15}
\end{align*}
$$

Taylor series expansion at $u=0$ of the left side of (15) is

$$
\begin{gathered}
{\left[-u\left\{P\left(\omega_{1}\right)+\frac{\eta_{1}}{\omega_{1}}\right\}-\frac{u^{3}}{3!} P^{2}\left(\omega_{1}\right)-\frac{u^{5}}{5!} P^{(4)}\left(\omega_{1}\right)-\cdot \cdot \cdot\right]^{2}-P\left(\omega_{1}\right)-} \\
-\frac{u^{2}}{3} P^{(2)}\left(\omega_{1}\right)-\frac{u^{4}}{4!} P^{(4)}\left(\omega_{1}\right)-\cdots \cdot
\end{gathered}
$$

$\left(P(r)\right.$ denotes the ${ }^{(r)}$ th derivative of P w.r.t. u) and that of right side is

$$
\left(2 \pi / \omega_{1}\right)^{2}\left[-\frac{1}{24}+\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}\left(1-\frac{1}{2}\left(\frac{n \pi u}{\omega_{1}}\right)^{2}+\frac{1}{4!}\left(\frac{n \pi u}{\omega_{1}}\right)^{4}-+.\right)\right]
$$

Hence, on comparing the coefficient of u^{2} on either side of (15), we obtain

$$
\left(P(u)+\frac{\eta_{1}}{\omega_{1}}\right)^{2}-\frac{1}{2} P^{(2)}\left(\omega_{1}\right)=2\left(\pi / \omega_{1}\right)^{4} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}} .
$$

or we have

$$
\left(e_{1}+\frac{\eta_{1}}{\omega_{1}}\right)^{2}-\frac{1}{2}\left(6 e_{1}^{2}-\frac{g_{2}}{2}\right)=2\left(\pi / \omega_{1}\right) \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}} .
$$

Therefore

$$
\frac{\eta_{1} e_{1}}{\omega_{1}}=e_{1}^{2}-\frac{q_{2}}{8}-\eta_{1}^{2} / 2 \omega_{1}^{2}+\left(\pi / \omega_{1}\right)^{4} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}} .
$$

Substituting the series expansions of $e_{1}{ }^{2}, g_{2}$ and $\eta_{1}{ }^{2}$ from (10), (9) and (6) respectively in the last relation we get (13).
Proof of Eq. (14) : Changing u to $u+\omega_{1}$ in the identity (4) we get

$$
\begin{align*}
& \left(\zeta\left(u+\omega_{2}\right)-\eta_{2}-\frac{\eta_{1} u}{\omega_{1}}-\frac{\pi}{\omega_{1}}\right)^{2}-P\left(u+\omega_{2}\right)= \\
& =\left(\frac{2 \pi}{\omega_{1}}\right)^{2}\left[-\frac{1}{24}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{q^{3 n}}{\left(1-q^{2 n}\right)^{2}} e^{n \pi u i j \omega_{1}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{q^{n} e^{-n \pi u i / \omega_{1}}}{\left(1-q^{2 n} 2^{2}\right.}\right] . \tag{16}
\end{align*}
$$

Comparing the coefficient of u^{2} in the Taylor expansion of (16) at $u=0$, we get

$$
\begin{align*}
& \left(P\left(\omega_{2}\right)+\frac{\eta_{1}}{\omega_{1}}\right)^{2}-\frac{1}{2} P^{(2)}\left(\omega_{2}\right) \\
& \quad \doteq-\left(\pi / \omega_{1}\right)^{4}\left[\sum_{n=1}^{\infty} \frac{n^{2} q^{3 n}}{\left(1-q^{2 n}\right)^{2}}+\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q^{2 n}\right)^{2}}\right] \tag{17}
\end{align*}
$$

Since $\quad \sum_{n=1}^{\infty} \frac{n^{2} q^{3 n}}{\left(1-q^{2 n}\right)^{2}}=\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q^{2 n}\right)^{2}}-\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-v^{2 n}}$,
the relation (17) gives

$$
\frac{\eta_{1} e_{2}}{\omega_{1}}=\varepsilon_{2}^{2}-\frac{g_{2}}{8}-\frac{\eta_{1}^{2}}{2_{1}^{2}}+\left(\pi / \omega_{1}\right)^{4}\left[\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{2 n}}-\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q_{2}^{2 n}\right)^{2}}\right]
$$

Substituting the expansions (11), (9) and (6) for $e_{2}{ }^{2}, g_{2}$ and $\eta_{1}{ }^{2}$, respectively, in the last relation we obtain (14). The series expansion for $\eta_{1} e_{3}$ can be easily got using the relations $\eta_{1} e_{3}=\eta_{1}\left(e_{1}+e_{2}\right)$.,

We have from (1)

$$
f\left(e_{1}\right)=e_{1}^{2}-\eta_{1} e_{1} / \omega_{1}-g_{2} / 6
$$

Substituting the series expansions of $e_{1}^{2}, \eta_{1} e_{1} / \omega_{1}$ and g_{2} from (10), (13) and (6), respectively we get

$$
\begin{aligned}
\left(\omega_{1} / \pi\right)^{4} f\left(e_{1}\right)= & \frac{1}{36}+\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}+\frac{1}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3} q^{2 n}}{1-q^{2 n}}- \\
& -\frac{1}{72}-2 \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{1 n-2}}{\left(1-q^{n n-2}\right)^{2}}+\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}} \\
& -\frac{1}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{3} q^{2 n}}{1-q^{2 n}}-\frac{1}{72}-\frac{10}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}}
\end{aligned}
$$

Carrying out the evident simplification of the right hand side, we obtain finally

$$
f\left(e_{1}\right)=-2\left(\pi / \omega_{1}\right)^{4} \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} 4^{4 n-2}}{\left(1-4^{4 n-2}\right)^{2}}
$$

This shows $f\left(e_{1}\right)<0\left(0<q<1\right.$ and ω_{1} positive). We notice that the last inequality holds for $0>q>-1$ also. Again fron (1)

$$
f\left(e_{2}\right)=e_{2}^{2}-\eta_{1} e_{2} / \omega_{1}-g_{3} / 6 .
$$

Substituting the series for $e_{2}^{2}, \eta_{1} \rho_{2} / \omega_{1}$ and g_{2} from (11), (14) and (9), respectively, in the last relation we have

$$
\begin{aligned}
& \left(\omega_{1} / \pi\right)^{4} f\left(e_{2}\right)=\frac{1}{144}+\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{\left(1-q^{2 n}\right)}+\frac{1}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{q^{1}-q^{2 n}}+\frac{1}{144} \\
& +\frac{5}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{\left(1-q^{2 n}\right)}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{2 n}}+\sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q^{2 n}\right)^{2}}-\cdots \quad \square \\
& -\sum_{n=1}^{\infty}\left(1-q^{2 n}\right)^{2}-\frac{1}{3} \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{2 n}}-\frac{1}{72}-\frac{10}{3} \sum_{n=1}^{\infty} \frac{n^{8} q^{2 n}}{1-q^{2 n}} \\
& =\sum_{n=1}^{\infty} \frac{n^{2} q^{n}\left(1-q^{n}\right)}{\left(1-q^{2 n}\right)^{2}}-\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1-q^{2 n}} \\
& =\sum_{n=1}^{n}\left(1-q^{2} q^{n}\right)\left(1+q^{n}\right) \quad=\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1-q^{2 n}\right)} \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}\left[2-\left(1+q^{n}\right)\right]}{\left(1-q^{2 n}\right)\left(1+q^{n}\right)}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1+q^{n}\right)^{2}} .
\end{aligned}
$$

or

$$
f\left(e_{2}\right)=\frac{1}{2}\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{n^{2} \rho^{2}}{\left.\left(1+n^{4}\right)^{2}\right)}
$$

Thi shows that $f\left(e_{2}\right)>0\left(0<q<1\right.$ and ω_{1} positive).
To obtain the series expansion for $f\left(e_{3}\right)$ in (7), we notice that $f\left(e_{1}\right)+f\left(e_{2}\right)+f\left(e_{3}\right)=0$ [for $\left.e_{1}+e_{2}+e_{3}=0 \& g_{2}=2\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}\right)\right]$.

Therefore

$$
\begin{aligned}
f\left(e_{3}\right) & =-f\left(e_{1}\right)-f\left(e_{2}\right) \\
& =2-\frac{1}{2}\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{4 n-2}}{\left(1-q^{4 n}-2\right)^{2}} \quad \frac{1}{2}\left(\frac{\pi}{\omega_{1}}\right)^{4} \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{\left(1+q^{n}\right)^{2}}
\end{aligned}
$$

Now

$$
\sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{4 n-2}}{\left(1-q^{4 n-2}\right)^{2}}=\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}-\sum_{n=1}^{\infty} \frac{(2 n)^{2} q^{4 n}}{\left(1-q^{4 n}\right)^{2}}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}-\left(\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1-q^{2 n}\right)^{2}}-\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1+q^{2 n}\right)^{2}}\right) \\
& =\sum_{n=1}^{\infty} \frac{n^{2} q^{2 n}}{\left(1+q^{2 n}\right)^{2}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{(2 n)^{2} q^{2 n}}{\left(1+q^{2 n}\right)^{2}} .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
f\left(e_{3}\right)=-\frac{1}{2}\left(\pi / \omega_{1}\right)^{4} \sum_{n=1}^{\infty} \frac{(2 n-1)^{2} q^{2 n-1}}{\left(1+q^{2 n-1}\right)^{2}}, \tag{18}
\end{equation*}
$$

hence it follows

$$
f\left(e_{3}\right)<0 \quad\left(0<q<1, \omega_{1}>0\right) .
$$

We have obtained Lere positive term series in place of the inequalities used by Halphen ${ }^{2}$; this may enable us to obtain an improvement on the Puiseux-Halphen bounds in the case of the spherical pendulum and other related problems.

ACKNOWLEDGEMENTS

My sincere thanks are due to Dr. K. Venkatachalieyangar, Retired Professor of Mathematics, University of Mysore, for the suggestion of the problem and for his kind guidance and encouragement during the preparation of this paper. I also wish to thank Dr, R.P. Shenoy, Director, L.R.D.E., Bangalore and Mr. H.P. Jaiswal, Divisional Officer, Transmission and Switching Division, L.R.D.E., Bangalore for providing all help necessary and permitting me to carry out this work.

REFERENCES

1. Leimanis, E., 'The General Problem of the Motion of Coupled Rigid Bodies about a Fixod Point' (SpringerVorlag, Borlin), Vol. 7, 1965, p. 29-36.
2. Halphen, G. 'Traite des Fonctions Elliptiques' t. 2 (Gauthier Villars, Paris), 1888, p. 128 et seq.
3. Whittaker, E. T. \& Watson, G. N. 'A Course of Modern Analysis' (Cambridge, University Press), Fourth edition, 1963, p. 429-461.
4. Hardy, G. H., et al. "Collected papers of S. Ramanujan' (Chelsea Publishing Co., Now Yćrk), 1962, p. 138, $142,140$.
5. Hardy, G. H., 'Ramanujan' (Chelsea, Publishing Co., New York), 1940, pp. 132-136.
*From these relations it follows that

$$
4 f(e)=-\left(\pi / \omega_{1}\right)^{2} \quad q \frac{d u}{d q} \quad(r=1,2
$$

[^0]: *The material presented in this paper is included in the Ph.D. thesis of the author.
 \dagger Throughaut the paper \boldsymbol{P} denotes the Weierstrassian elliptic function.

