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In this paper; we -have obtained a set of non-similarity solutions in closed forms for the propagation of a
cylindrical blast wave in a radiative gas. An explosion in & gas of constant density and. pressure has been congi-
dered by assuming the existence of an’ initial uniform magnetic field in the axial direction. The disturbsance °
is. supposed to be headed by a shock surface of variable strength and the total energy of the wave varies
with time. . .

Propagation of cylindrical blast waves in a plasma, under a constant axial current, has been studied by
Greenspan?, Greifinger and Cole? and Christer and Helliwell>. These authors have sought similarity
solutions of the problem for a very strong instantaneous line explosion. Korobeinikov? has considered the
problem of an explosion in a gas of constant density and pressure, by assuming the existence of an initial
uniform magnetic field in the axial direction. He reduced the equations of motion in terms of two indepen-
dent variables in suitable forms to effect numerical computations.

In the present paper, we have considered a problem similar to that of Korobeinikov®. We find such
solutions which maintain their similarity form except at the shock surface heading the disturbed region.
After Sedov5, we name such motions as non-self-similar. The strength of the shock propagated does not
remain constant. The variation of both the Mach number of the shiock as well as the energy of the wave
with time has been considered. We have also included radiation effects which enter in three forms, (¢) radia-
tion flux (i5) radiation pressure, and (¢i7) radiation energy density. While radiation flux becomes important
even in laboratory experiments the effects of radiation pressure and radiation energy density simply get
added to the gas pressure and gas energy density. Radiation effects are important for supersonic aerodyna-
mies, nuclear explosions and nuclear energy devices, the defence applications of which cannot be over

emphasized. -
' ¢
EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The equations, governiné the motion of the fluid behind a magnetogasdynamic cylindrical shock wave
in a radiative gas, can be expressed, in the usual notation as, - .-
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The suffixes M, B and H attached to a symbel &enote expressmns for matemal rad_iatlon and magnemc
terms respectxvely Also we have, Lot :
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: Where ¥, 88 usual is the ratio of the speclﬁc heats The radlatlon flux F is given by
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where (' is the velocity of hght a.nd € is the cqefﬁclent\of opaclty Also Py = 7 03 p R= (1——Z) P (0<Z<1)
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where p is called the Khmshm s coefficient, given by, ;
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Also by assuming the ad_ia,baey fer each element of the fluid, we have, ‘ :
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where 4, Pp, and, H are the veloclty pressure, dehsity ami &xially' dlreeted magnetic field at a distance. »
from the line of explosion at any time ¢. The motion is supposed to be bounded on the outside by a cvhn- :
drical shock surface 7 = R(t), moving outward with a velomty, o
‘ dR S
V — 7t—- . 5
. H A <. R o N
With the help of (2) and (5) the equatlon (3) can be wntten as, e
4 r—1 - '
+u4ap + I'p (_3_u+ ) +- : --—(Ff)~0 B )

7 var

ru

FIf Ds Po 2NA H are the pressure, dens1ty and magnetlc ﬁeld in the undlsturbed state, and D> Prs - Uy
and H,, denote correspondmg expressions Just behind the shock, we have the following form of usual shock

condxtlons4 .
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The. pa.r&meterstand M% should be such that (pg /[ pn) < 1 & aondltlon w]uch is easxly Seen. to
be satisfied for'Mz and M2, sufﬁcwntly lange WJ& oW aqu a sohmon @f equatmns (1) (2), (7 ) a,nd (8) in the
form
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the Qonstant A bemg determined from the vahxe of the explosmn energy From (22) we easﬂy deduce that M
“and M, are flmctlons of tlme ‘ ;
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SOLU,TION OF EQUATIONS

The condition msule the wave is obtaaned from the solution ef the equa,tlons (1) to (3) a,nd (8)

From the equa.tlons (13), (20) and' (21), yze get —
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From the equatmns (14) ;md (18), wmh va.hzes of K &, a and b determmed abnve we ha,ve,
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Integratmg the above equatmn and applymg the’ boundary condltmns B 5 e |
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The equation (1), by using (23) may be wrltten as,
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which on integration gives,
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The equation (2), by using (25) may be Wntten as,
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which on integration gives,
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Sumlarly, thé equatlon (8), by usxiﬁg (24) may be written as "
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Equatlons (26) to (29) give the solution of our problem. They constitute a set of non-similarity solutions
in closed forms.
ENERGY OF THE WAVE

5‘“‘

When i T ;
2(u—1)

¥=(1—p) v= %(1— p.); tr = constant (say u,)

The total energ\y ¢ (¢) of the configuration after expldsiqnf‘ is ‘given by,
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e seo from (30) that ¢ (¢).is a function of 1, iny and by assumptlon n=dtr, p#0 ‘but

p<l. Hence ¥ is a vena.ble which " cha,nges Wlth time. -
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