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The present paper gives the golution of the equations of internal ballistics of H/L gun fér*composite
char~es taking most general form function assuming constant pressure-ir both the chambers.during the®scond
stage of burning, i.e., after the burning of the first component charge. ’ Tt

A low peak pressure in the gun is desirable from the point of view of the projectile design as well as over-
~ all weight of the gun. By keeping low pressure in a gun the weight of the metal casing of the projectile can be

decreased and more explosive can be carried in the projectile for a given total weight, thus a greater lethal
- effect can be produced. ce ST : : : :

The ignition difficulty of the propellant in low pressure weapons and the round to round variations or
muzzle velocity were removed by the development of high-low pressure guns, by German Engineers in World
War II. In these the propellants are made to burn in the main chamber under high pressure and the gases
are passed on to the second chamber and the bore through nozzles. Thus by suitably choosing the nozzle area,
the ignition and regularity can be improved while the projectile is exposed to much lower pressure.

- The internal ballistics of high-tow pressure. gun was discussed by Aggarwall, Corner 23 and Kapur
" for the general form function. Recently, Bhattacharyya’ had discussed the attainment of constant presstres
in both the chambers in an H/L gun with maderated charges during the second stage of burning. In the pre-
sent paper, the author tries to solve the internal ballistics of H/L gunt ‘with composite charges having twe
components-taking most general form function, pressures in both the first and second chamber in the H/L
gun have been assumed to remain constant duting the second stage of burning. The constant pressures being
equal to the pressures at burnt during the first stage. The internal ballistics during the first stage of burning
~are assumed to be known and those for the second stage of burning are determined. The conditions for the
attainment of constant pressures determine two relations between the four characteristics of the second pro-
pellant component of which two may be known from the physical properties of the propellant so that the
other two may be calculated. The solution given by® can be derived as a particular case of the present solu-
tion. The solutiop for composite charges taking tabular form functions has also been derived.

. NOTATIONS

The yfollowi‘ng notations have been used in this paper.

A = Bore-area, -
¢ : = Mass of the propellant. charge, -
‘ D = Initial web-size, , '
~f = Fraction of the web-size remaining at fime ¢, | '
'K = Volume of the first chamber containing the charge,
Kz = Volume of the second chamber, O : ‘
P, = Prossure of the gases in the first chamber taken to be uniform ab the instant t,
P, = Pressure of the gases in the second chamber at the instant ¢, -
R = Gas constant pe%r gram of the gas, }
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- Throat area of the venturi or nbzzles connectmg the two cha,mbers, '
Shot veloc1ty at the mstant t, '

<@
o

‘The effectlve shot welght
/ Shﬂt travel at the instant t,

~ Fraction of the charge burnt up to time,

~H

]

k-

il

I

Ce= Rate of burmng coefficient, : | .
Ve Ratm of the two specific heats of the propellant gases, "

1

, Denslty of the. propellant,

X
3

= Leakage parameter w]nch is a funm@n _O 7,

‘= Mass of the charge burnt up 1 to any instant ¢
cN Amount of the gases in the first chamber at: the 1nstant t,

oz + cgza = Amount of the two propellants burnt up to t1me t

It

(clzl + cazg)N \Amount Qf the gases. in the ﬁrst chamber at the instant ¢,

'BALLI 3 TICS EQUATIONS FOR COMPOSITE CHARGES

- First Stage of . Bummg , ;
The equatlon of state for gases in the first chamber

C2 "z %9~

B e e e =P R UNE T EIORNSE
The e(iﬁation of state for the gases in the second chamber - |
[Uz +Aw——(01251 +Gzz2)"7+(cl "l"cs):N"l] [01¢1+02¢2’_‘(01 +02)~N]RT2 (2)
The equatlon of contlnmty (When o <ﬁ Wi g ; s s
dzy " dz,
(01 + cz) 1 —Jt—l— +’ Ca d: (3)
<
' where o ‘ ,
Y= ( ” 2y T )1}‘ .}md N is the fraction of the total charge turned into gas.
The law of burning is . | ' _ '
. . ﬁ ’ - | )
Dz -——‘-.---—ﬂ.P1 ("=;1’2) (4)
The most general form functlon is < e
= (f. =1 (5)
The equatlon of energy for the ﬁrst chamber B _ ’ )
* d o\ ., d -
\d [ (ex + co) NTy ] T, (cl,, flcs NN d:z )“VTI'TJF [c1z1 +02z2_(01,+02)1v](6)
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W::,The equatmn of ¢ energy for the seaon d Chamber

o The equatwp of motion of the shot is. :

] o

~

®

P=P,=T,=T,=N=0=0 whenfl fi=lihen=5=0_

We suppose that this solution g1ves ‘ _
P, = PlBu P, = Pyp, T1 = T]Bu T‘) = TZBL’ N NBU ”—"”313115-‘”_“’31

;o When the first component is completely burnt i.e., when f; = O Ifrem (4) the value of f2 at burnt of i
the first component L T :

oo

where" - ..

D,./ﬂ1 5 ®)

‘ Secoml Stage of Burmng .
The equs,tlon of state for the gases in the ﬁrst chamber

A et (c1+cz)Nn] (cl+ca)NRT1 g

The e.quatlon of state for the gases in the second chamber
[Uz +Aw—-—(cl e+ o) o ] -[ o Fom— (o ‘l‘cz)N] RT, (1)

The equatwn of contmmty (When @ < w*) : ;
| Cdy W8P

b S RT, 12)
The eqﬁatioﬁ of "burning is ‘ ‘ __
e ey R i
R e R

- The most general form function is ‘ A - =
' ' -'—‘152 fa) R . B O

‘The equatlon of energy for the ﬁrst chamber is

[(01 +62) NT1] Tofh, dt —y T ‘—le't“[%‘z,z-—,(cl +(;2)N] v (15)
- N R ) o #7 :
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The equa.tion of energy for the second chamber ifs: ; , : -
R '"ZT[ \{cl"i‘;f’z 27— (cl+02)N }Tz } =71, % [02 aT (c‘ + 02) N] N
_The ‘e,quaﬁon of 'r;lotioh\ is _ ’ ; ,
| W%”—QAP R o

ER .

: SOLUTION OF THE EQUATIONS WITI-I DIFFERENT STAGES OF BUB,NING

We suppose that the solutions of the above equations are poss1ble wwh

Po=Pin Pz =Py (18)
a,nd ﬁnd ‘rhe conditions so that this solution may glve -
wma}BI’vaBl’N Nm, T1- 1B
and - : = L 2

: Tz T281 atfz f2Bl X
The equatlons (10) to 17 ) may remam conswtent for the solutlon I-’1 = P1 Bi and P2

281
With (18), (13) and amn, we have ; AL i
- : - d’” . (A ) D, P o :
i ) . dfz T w Bz P1B1 . . (19)
but by (13) and (18) becomes / . -
Integratmg (19) Wlth the oondltlon = ”Bz at fg fzgl s We. ’ha,vé ’_ {
“ A Dy - S G
v = 0, + 5 ﬁ: _ (feBt*'fa - (21)
Now we put the oondition that (10) and (11) with (18) gives | 2

/ w'—‘wBl,Tl"‘T]Bt:T2""TZBl
and N = Np, at f2 fom and further (10) and (11) are consistent w1th (20)
Now € =g , Ty=Typ, N= N31 and z, = -’”zm will satlsfy (11) if

Pyp, [ U, + A-”?B1 — (¢ + Gy zzlh) 7 + (01 + ‘72) NBx Ui ] == [ 41 + Ca %p; — (¢ + ¢y) Ny, ]ARTwl

» \ - (22) °
.which is true, since (22) is obtamed from (2) by co.nmdermg values when the first component burns out.

Again N = N By Ty = T131 and 2, = 2,5 will satlsfy (10) if

‘ Vc . i - ) v
TN Pyp [U] — '3_2 +“§2;‘ Z3B1 — (01 + ¢3) Np, "I] = (ci + Cg) Np, BT, 5, (23;

~ which is true since (23) is obtained from (1) by considefipg yalues when the first component burns out,

18 } \ i -
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Wlth the help of (13), equatmns (12) { 15) a,n& { 16) oan be\wntten a8 o “

cl Ij: —S’ \
) (01 —}—62) df2 = cz d;2 + j '\/ ¢
aq , S d . d- 5
'E‘f;[ (01+02)NT1]"—T002 df ‘“7[1'('1“7? Ca “‘(01 +Gz) ]

and ‘ ‘ o TP e L R

dfz

: Integratmg (6), (1), (2b) and - (42&)‘ We get

d [{cl +on— (o ey N} T, ] —r % [% _;(,,«,1; e) N] ’

, { 6+ 2 — (o ’_l‘k’{.c‘z) N} + (o + 02) NTx == To(cl +6252§

Gy

‘ (24):.

(25)

' :/‘ (26)

(27)

.PlBl.[kl’Il*.—s—z— + e o (o + G N'r)] +P231[ U1+Aw*4‘(¢1 +62zz) 7+

8

. A
L1 e -

+ (e 4 ) Ny ]= Ry (¢, + ¢y %)

leferentla‘omg (28) and (14) Wlth respect to j';,, w1th the hﬂlp of (13) 18) and (24), we get

ﬂz P1B1 il

J"'"")PIBI{ 02¢? (f2)+ B'\/RTl f —RT002¢ (fz

"1“*’“" P131 ¢z(f2)“—‘_’ '

Now v = vg, , T} = T'yp; and f = fo, Wl].l satisfy (29) if

/ ‘A"UB.I gﬁ ;:22 + [ ‘/’ (fz) ]f = fon [ ETo -‘02n+02‘:Pr1%1’ ("7“‘ _‘3—}) ]—_—‘ ‘

D S ‘ -
]322 V RZ’ (P 1B ™ P 2B1) ; \

Introducing the followmg d1mens10nless constants -

& _ o Dty . $8D <)
6 P> D,/g, O%Q’ ¢«—— By ¢y BTy ’
- vpy /4D, , PzBl =i Tipy =T ‘,'
8 ¢ B RTy ’ Pyp — B T, s
' ' PlBl . ’ 1 ' ‘PIBI e : ‘
1 Rr, S\ %) RE, T |

o : : VRN N 70‘/‘ (1“‘“"31)/'\/1" + nBy “’Bl /’
[ s*!"aj fffz) ]fz =famy A T 1 -|-8 ’

@9

(29)

(30)

Gy

(32)
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For the consistency of (20) and (28) , diﬁ'eréntiating (28) twice w.r.t. f, and with the help of the equation
(14), (28) and (20) we get _ ’ S
A2, D2, Py 9Py Dy 4 S 4Ty o Cs op o
o Py T yETE &, PR b
) . . " 'DB‘Fg dTl ” .
B ; { ¢ 2 (fz)oz ‘— P/ R AP af, = ¢’y (fz) RF, ¢,

"~ or e
42 D2 p2
AD2P231

. ' 1 \
waaa] Bo+ (1= 5 )| = ST+
D3 S . dr
g B Ra) = 3)
Also from (23) and (24), we have i a \ Pedin T , . -
ar, 1 [ o Dy FRe—D . !
Tl v[em—nnw+ =2 a0 e

For T, = Twz ; N = Np and f, = fp, will satisfy (33) and (34) we get _
o1y A2D% Php 4Dy $8 (Pisi— Pay)
‘orve | R (,____) ]2 L I et W AL St
#2 (f) ég [ r" R Qe 8/ P | = B o Php . 28/R T3P (¢ + ¢) N

(5B ) v (i g ]

Be- VR

Introducing the ballistio pa\ra,mé,ter\
Ay
M - 21 w Cy .RT 0

From (31), the equation .(35) can be written in the non-dimensional form as :

" a8 = Qg wly  Vobay (= wp)
R AR =M T SR VT N |
| H :¢2(f2)} e (T )t ] (36)

The consistency of (32) and (36) gives the condition that P; = Pip, and Py, = PzBl may be the
solution of (10) to (17). The connection between the four parameters oy, By, ¢z and 5, defining the second
propellant component is clear from the equations (382) and (36). : ‘ s

The properties and mass of the first component are assumed to be known. 8, involves 7 and 1/3,
‘and’ B, involves c; which areSupposed to be known in the integration of equation for the first stage
of burning. Thus (32) and (36) give the size and shape of the second propellant component provided o, is
positive. B L :
If y = 1/8; &~ O then Yo =8 =0, (32) and (36) reduce to,
. k S _“0_ ) :
[¢ 2 (f2) ]fz = fom B ™t @5 !
and ' ‘ ‘
a?y . wlpy -
$" (fo) = M,y —0—‘/—3—51
< ’ ; . 0
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GUPTA : Bhlliéfioo"sciuti\on of H/L Precﬁurc Gun ’, ;
A8, , Ml a : o L .
’ B w0 RZO TR be the cencral balhsclc para‘meter corresp()ndmg for t‘he‘
v 'second. component cha,rge L ‘ , _ ; ,
. ) ) : . ¢ 2 (fs) 4 p R b N ey

: Thus within the practlcal range of values of M and wb‘1 . txo may be poswwe From (21)

vBa=f}Bl"—{f, — _B,) 231 f2Bl b (37) :

\M2==‘

: thcn‘ ’
YB2 1 +- Ml%
VB

T owsy sziy"
which is ‘ohe veloclty ra,tlo and its value is less than the velocl’oy ratio for the modera.tcd charges

From (20); (13) and (18), we get

Bz ;Blf (‘”*’*"’Bl) -— "’BL (feBl fz) + ‘gﬁ (f231 fz)z ' (39)

Let @ = @ps when the second component burns out i. e fz =0,

Then we get

D, w . AD%, P ‘
Tpy — Bpy = —Bzi L f231 + W—P—f@* f2231 - ; (40) :

From (31) we get

T8y —ap iy C""’iﬁf; M2 - A o :
B B = 1L [‘foﬂﬂlfwl G 12 = @p; fzzBl] : N

S ndom
Introducing another ‘dimensionless fquantity*' ;

\ :gB" = AKDBI

. the travel ratio is

. = Zél.ith [%")Bl+ M“,'o w‘Blszl] (42)'

o

-~ whlch is alao less tha.n the ratio correspondmg to the moderated charges D:ﬂerentlatmg (10) w I t‘ to f2 and
- uslng (18) 25) a,nd (31) we. get i , , .

%(fg) @+ 34)__‘3 »




Dgr. Scv.:J., Vor, 27, JaxvaRy- 1977

where T = —;’l— - Thus (43) determines T" as a function of f,. Equation (24) can be written as
0 - . ) S
S 1y @ roo
- 1 - S L - 7 ’ 44
| ( + ﬁo.) U R N A5
On puttmg the value of T from (43) and 1ntegrat1ng (44); we get Nasa functlon of f,.
ﬂo ) ‘ ‘/1 OC(, ’ f B -
= : s d B 4b
YT THR AT Tra lvp BEE “)

where B ig determined by the condltlon N = N 71 and f2 f2 B1-
) T1 and N-are determmed from (43) and (45) T2 is detei*mmed as a function of Jz from the relation (27)
PARTICULAR CASES WITH DIFFERENT FORM FUNCTIONS
(7) Let us _take the form function givep by, - ‘
¢Mﬁ 1~ﬁ (L+06.1)
4’ (fa) = (1 "fz) (1 -+ 8, 2 Se) - ,

1— T, T - ‘ R
o ﬁo yo*ﬁ f wf:):(\s/ + 198 _ g +ye2»—} 292.fg3{, T 46)
' 2052w, i Yodot, (1 — wg,) 19 . 26’ Y _Q_ A4 Yo (y— 1)
w B e (ot msa) (17) + a0
: =214+ 8%+) : | (47)

which-are the similar equatmns as given by Corner?® '
(¢¢) Further assummg the form functlon in tabular form glven by
351 f 1 == (1 —f)
#:(f) = (—f)

assuming 6, = 0 and 6, = 0, w§ have the following relatlons

oy yob (L — wm) [/ Tp + nyeom . -
2%29)2131 ‘)’o'/’% — wp) [ ( . L ) ‘/’“o (8 — }_)_ ] =-0 ' R 9
My Bo + 1+Bo)\/T'0NB o T * 180\/7" S (:i )
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