ON BALLISTICS SOLUUTION OF H/L PRESSURE GUN FOR COMPOSIYE CHARGES TAKING MOST GENERAL FORM FUNCTION

Padam Chand Gupta
Directorate of Research in Basic Sciences, New Delhi

(Received 14 December 1975)

> The present paper gives the solution of the equations of in ornal ballistios of H/L gun for composite char es taking most general form function assuming constant pressure is both the chambers during the tecond stage of burning, i.e., after the burning of the first component charge.

A low peak pressure in the gun is desirable from the point of view of the projectile design as well as overall weight of the gun. By keeping low pressure in a gun the weight of the metal casing of the projectile can be decreased and more explosive can be carried in the projectile for a given total weight, thus a greater lethal effect can be produced.

The ignition difficulty of the propellant in low pressure weapons and the round to round variations of muzzle velocity were removed by the development of high-low pressure guns, by German Engineers in World War II. In these the propellants are made to burn in the main chamber under high pressure and the gases are passed on to the second chamber and the bore through nozzles. Thus by suitably choosing the nozzle area, the ignition and regularity can be improved while the projectile is exposed to much lower pressure.

The internat ballistics of high-low pressure gun was discussed by Aggarwal ${ }^{1}$, Corner ${ }^{2,3}$ and Kapur ${ }^{4}$ for the general form function. Recently, Bhattacharyya ${ }^{5}$ had discussed the attainment of constant pressures in both the chambers in an H / L gun with moderated charges during the second stage of burning. In the present paper, the author tries to solve the internal ballistics of H / L gun with composite charges having twe componentstaking most general form function, pressures in both the first and second chamber in the H / L gun have been assumed to remain constant düring the second stage of burning. The constant pressures being equal to the pressures at burnt during the first stage. The internal ballistics during the first stage of burning are assumed to be known and those for the second stage of burning are determined. The conditions for the attainment of constant pressures determine two relations between the four characteristics of the second propellant component of which two may be known from the physical properties of the propellant so that the other two may be calculated. The solution given by ${ }^{6}$ can be derived as a particular case of the present solution. The solution for composite charges taking tabular form functions has also been derived.

NOTATIONS

The following notations have been used in this paper.

$$
\begin{aligned}
& A=\text { Bore-area, } \\
& c=\text { Mass of the propellant charge, } \\
& D=\text { Initial web-size }, \\
& f=\text { Fraction of the web-size remaining at time } t, \\
& K=\text { Volume of the first chamber containing the charge, } \\
& K_{0}=\text { Volume of the second chamber, } \\
& P_{1}=\text { Pressure of the gases in the first chamber taken to be uniform at the instant } t, \\
& P_{2}=\text { Pressure of the gases in the second chamber at the instant } t \\
& R=\text { Gas constant per gram of the gas, }
\end{aligned}
$$

$S=$ Throat area of the venturi or nozzles connecting the two chambers,
$v=$ Shot velocity at the instant t,
$W=$ The effective shot weight,
$x=$ Shot travel at the instant t,
$\psi_{2}=$ Fraction of the charge burnt up to time,
$\beta=$ Rate of burning coefficient,
$\gamma=$ Ratio of the two specific heats of the propellant gases,
$\delta=$ Density of the propellant,
$\bar{\Psi}=$ Leakage parameter which is a funetion of γ
$c z=$ Mass of the charge burnt up to any instant t,
$c N=$ Amount of the gases in the first chamber at the instant t,
$c_{1} z_{1}+c_{2} z_{2}=$ Amount of the two propellants burnt up to time t,
$\left(c_{1} \mu_{1} \perp e_{2} z_{2}\right) N=$ Amount of the gases in the first chamber at the instant t,

BALLISTICSEQUATIONS FOR COMPOSITECHARGES

First Stage of Burning

The equation of state for gases in the first chamber

$$
\begin{equation*}
P_{1}\left[U_{1}-\frac{c_{1}}{\delta_{1}}-\frac{c_{2}}{\delta_{2}}+\frac{c_{1} z_{1}}{\delta_{1}}+\frac{c_{2} z_{2}}{\delta_{2}}-\left(c_{1}+c_{2}\right) N \eta\right]=\left(c_{1}+c_{2}\right) N R T_{1} \tag{1}
\end{equation*}
$$

The equation of state for the gases in the second chamber

$$
\begin{equation*}
P_{2}\left[U_{2}+A x-\left(c_{1} z_{1}+c_{2} z_{2}\right) \eta+\left(c_{1}+c_{2}\right) N_{\eta}\right]=\left[c_{1} \phi_{1}+c_{2} \phi_{2}-\left(c_{1}+c_{2}\right) N\right] R T_{2} \tag{2}
\end{equation*}
$$

The equation of continuity (when $\omega<\omega^{*}$)

$$
\begin{equation*}
\left(c_{1}+c_{2}\right) \frac{d N}{d t}=c_{1} \frac{d z_{1}}{d t}+c_{2} \frac{d z_{2}}{d t}-\frac{\bar{\psi} S P_{1}}{\sqrt{R T_{1}}} \tag{3}
\end{equation*}
$$

where

$$
\bar{\psi}=\left(\frac{2 \gamma}{\gamma-1}\right)^{\frac{1}{2}} \text { and } N \text { is the fraction of the total charge turned into gas. }
$$

The law of burning is

$$
\begin{equation*}
D_{i} \frac{d f_{i}}{d t}=-\beta_{i} P_{1} \quad(i=1,2) \tag{4}
\end{equation*}
$$

The most general form function is

$$
\begin{equation*}
z_{i}=\phi_{i}\left(f_{i}\right) \quad(i=1,2) \tag{5}
\end{equation*}
$$

The equation of energy for the first chamber :

$$
\begin{equation*}
\frac{d}{d t}\left[\left(c_{1}+c_{2}\right) N T_{1}\right]=T_{0}\left(c_{1} \frac{d z_{1}}{d t}+c_{2} \frac{d z_{2}}{d t}\right)-\gamma T_{1} \frac{d}{d t}\left[c_{1} z_{1}+c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{6}
\end{equation*}
$$

The equation of energy for the second chamber :

$$
\begin{equation*}
\frac{d}{d t}\left[\left\{c_{1} z_{1}+c_{2} z_{2}\left(c_{1}+c_{2}\right) N\right\} T_{2}\right]=\gamma T_{1} \frac{d}{d t}\left[c_{1} z_{1}+c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{7}
\end{equation*}
$$

The equation of motion of the shot is

$$
\begin{equation*}
W \frac{d v}{d t}=A P_{2} \tag{8}
\end{equation*}
$$

These equations have been solved with initial conditions

$$
P_{1}=P_{2}=T_{1}=T_{2}=N=0=v \text { when } f_{1}=f_{2}=1, \text { i. e. } z_{1}=z_{2}=0
$$

We suppose that this solution gives

$$
P_{1}=P_{1 B_{1}}^{-}, P_{2}=P_{2 B_{1}}, T_{1}=T_{1 B 1}, T_{2}=T_{2 B 1}, N=N_{B_{1}, v}=v_{B 1} \text { and } x=x_{B 1}
$$

When the first component is completely burnt i.e., when $f_{1}=0$. From (4) the value of f_{2} at burnt of the first component,

$$
f_{2 B_{1}}=1-\frac{D_{1} / \beta_{1}}{D_{2} / \beta_{2}}=\left(1-\frac{1}{\alpha_{0}}\right)
$$

where

$$
\begin{equation*}
\alpha_{0}=\frac{D_{2} / \beta_{2}}{D_{1} / \beta_{1}} \tag{9}
\end{equation*}
$$

Second Stage of Burning

The equation of state for the gases in the first chamber

$$
\begin{equation*}
P_{1}\left[U_{1}-\frac{c_{2}}{\delta_{2}}+\frac{c_{2}}{\delta_{2}} z_{2}-\left(c_{1}+c_{2}\right) N \eta\right]=\left(c_{1}+c_{2}\right) N R T_{1} \tag{10}
\end{equation*}
$$

The equation of state for the gases in the second chamber

$$
\begin{equation*}
P_{2}\left[U_{2}+A x-\left(c_{1}+c_{2} z_{2}\right) \eta N+\left(c_{1}+c_{2}\right) N_{\eta}\right]=\left[c_{1}+c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] R T_{2} \tag{II}
\end{equation*}
$$

The equation of continuity (when $\omega<\omega^{*}$)

$$
\begin{equation*}
\left(c_{1}+c_{2}\right) \frac{d N}{d t}=c_{2} \frac{d z_{2}}{d t}-\frac{\bar{\psi} S P_{1}}{R T_{1}} \tag{12}
\end{equation*}
$$

The equation of burning is

$$
\begin{equation*}
D_{2} \frac{d f_{2}}{d t}=-\beta_{2} P_{1} \tag{13}
\end{equation*}
$$

The most general form function is

$$
\begin{equation*}
z_{2}=\phi_{2}\left(f_{2}\right) \tag{14}
\end{equation*}
$$

The equation of energy for the first chamber is

$$
\begin{equation*}
\frac{a}{d t}\left[\left(c_{1}+c_{2}\right) N T_{1}\right]=T_{0} c_{2} \frac{d z_{2}}{d t}-\gamma T_{1} \frac{d}{d t}\left[c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{15}
\end{equation*}
$$

The equation of energy for the second chamber is:

$$
\begin{equation*}
\frac{d}{d t}\left[\left\{c_{1}+c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right\} T_{2}\right]=\gamma T_{1} \frac{d}{d t}\left[c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{16}
\end{equation*}
$$

The equation of motion is

$$
\begin{equation*}
W \frac{d v}{d t}=A P_{2} \tag{17}
\end{equation*}
$$

SOLUTION OFTHEEQUATIONS WITHDIFFERENTSTAGES OF BURNING
We suppose that the solutions of the above equations are possible with

$$
\begin{equation*}
P_{1}=P_{1 B_{1}}, P_{2}=P_{2 B 1} \tag{18}
\end{equation*}
$$

and find the conditions so that this solution may give

$$
x=x_{B_{1}}, v=v_{B_{1}}, N=N_{B_{1}}, T_{1}=T_{1 B_{1}}
$$

and

$$
T_{2}=I_{2 B 1} \text { at } f_{2}=f_{2 B 1}
$$

The equations (10) to (17) may remain consistent for the solution $P_{1}=P_{1 B 1}$ and $P_{2}=P_{2 B 1}$
With (18), (13) and (17), we have

$$
\begin{equation*}
\frac{d v}{d f_{2}}=-\left(\frac{A}{\omega}\right) \frac{D_{2}}{\beta_{2}} \frac{P_{2 B_{1}}}{P_{1 B 1}} \tag{19}
\end{equation*}
$$

but by (13) and (18) becomes

$$
\begin{equation*}
\frac{d^{2} x}{d f_{2}^{2}}=\frac{A D_{2}^{2}}{\beta_{2}^{2} \omega P_{1 B 1}} \frac{P_{2 B_{1}}}{P_{1 B_{1}}} \tag{20}
\end{equation*}
$$

Integrating (19) with the condition $v=v_{B 1}$ at $f_{2}=f_{2 B_{1}}$, we have

$$
\begin{equation*}
v=v_{B_{1}}+\frac{A}{W} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B 1}}{P_{1 B 1}}\left(f_{2 B t}-f_{2}\right) \tag{21}
\end{equation*}
$$

Now we put the condition that (10) and (11) with (18) gives

$$
x=x_{B_{1}}, T_{1}=T_{1 B_{1}}, T_{2}=T_{2 B_{1}}
$$

and $N=N_{B 1}$ at $f_{2}=f_{2 B_{1}}$ and further (10) and (11) are consistent with (20).
Now $x=x_{B_{1}}, T_{2}=T_{2 B_{1}}, N=N_{B_{1}}$ and $z_{2}=x_{2 N_{1}}$ will satisfy (11) if

$$
\begin{equation*}
P_{2 B_{1}}\left[U_{2}+A x_{B_{1}}-\left(c_{1}+c_{2} z_{2 B_{1}}\right) \eta+\left(c_{1}+c_{2}\right) N_{B_{1}} \eta\right]=\left[c_{1}+c_{2} z_{2 B_{1}}-\left(c_{1}+c_{2}\right) N_{B_{1}}\right] R T_{2 B_{1}} \tag{22}
\end{equation*}
$$

which is true, since (22) is obtained from (2) by considering values when the first component burns out.
Again $N=N_{B 1}, T_{1}=T_{1 B_{1}}$ and $z_{2}=z_{2 B 1}$ will satisfy (10) if

$$
\begin{equation*}
P_{1 B_{1}}\left[U_{1}-\frac{c_{2}}{\delta_{2}}+\frac{c_{2}}{\delta_{2}} z_{2 B_{1}}-\left(c_{1}+c_{2}\right) N_{B_{1}} \eta\right]=\left(c_{1}+c_{2}\right) N_{B_{1}} R T_{1 B 1} \tag{23}
\end{equation*}
$$

which is true since (23) is obtained from (1) by considering values when the first component burns out.

With the help of (13), equations (12), (15) and (16) can be written as

$$
\begin{gather*}
\left(c_{1}+c_{2}\right) \frac{d N}{d f_{2}}=c_{2} \frac{d z_{2}}{d f_{2}}+\frac{D_{2}}{\beta_{2}} \frac{\bar{\psi} \delta}{\sqrt{R T_{1}}} \tag{24}\\
\frac{d}{d f_{2}}\left[\left(c_{1}+c_{2}\right) N T_{1}\right]=T_{0} c_{2} \frac{d z_{2}}{d f_{2}}-\gamma T_{1} \frac{d}{d f_{2}}\left[c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d}{d f_{2}}\left[\left\{c_{1}+c_{2} z_{2}-\left(c_{1}+e_{2}\right) N\right\} T_{2}\right]=\gamma T_{1} \frac{d}{d f_{2}}\left[c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right] \tag{26}
\end{equation*}
$$

Integrating (6), (7), (25) and (26), we get

$$
\begin{gather*}
\left\{c_{1}+c_{2} z_{2}-\left(c_{1}+c_{2}\right) N\right\} T_{2}+\left(c_{1}+c_{2}\right) N T_{1}=T_{0}\left(c_{1}+c_{2} z_{2}\right) \tag{27}\\
P_{1 B_{1}}\left[U_{1}-\frac{c_{2}}{\delta_{2}}+\frac{c_{2}}{\delta_{2}} z_{2}-\left(c_{1}+c_{2}\right) N \eta\right]+P_{2 B_{1}}\left[U_{1}+A x-\left(c_{1}+c_{2} z_{2}\right) \eta+\right. \\
\left.+\left(c_{1}+c_{2}\right) N \eta\right]=R T_{0}\left(c_{1}+c_{2} z_{2}\right) \tag{28}
\end{gather*}
$$

Differentiating (28) and (14) with respect to f_{2}, with the help of (13), (18) and (24), we get:

$$
\begin{align*}
& \frac{-A P_{2 B 1} v D_{2}}{\beta_{2} P_{1 B 1}}+\eta \frac{P_{2 B 1} \bar{\psi} S D_{2}}{\beta_{2} R T_{1}}+\frac{c_{2}}{\delta_{2}} P_{1 B 1} \phi_{2}^{\prime}\left(f_{2}\right)- \\
& -\eta P_{1 B 1}\left\{c_{2} \phi_{2}\left(f_{2}\right)+\frac{S D_{2}}{\beta_{2} \sqrt{R T_{1}}}\right\}=R T_{0} c_{2} \phi_{2}^{\prime}\left(f_{2}\right) \tag{29}
\end{align*}
$$

Now $v=v_{B 1}, T_{1}=T_{1 B 1}$ and $f_{2}=f_{2 B 1}$ will satisfy (29) if

$$
\begin{gather*}
A v_{B_{1}} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B_{1}}}{P_{1 B 1}}+\left[\phi_{2}\left(f_{2}\right)\right]_{f_{2}}=f_{2 B_{1}}\left[R T_{0} c_{2}+c_{2} P_{1 B_{1}}\left(\eta-\frac{1}{\delta_{2}}\right)\right]= \\
\quad--\frac{D_{2}}{\beta_{2}} \frac{\psi \eta S}{\sqrt{R T_{1 B_{1}}}}\left(P_{1 B_{1}}-P_{2 B_{1}}\right) \tag{30}
\end{gather*}
$$

Introducing the following dimensionless constants

$$
\begin{align*}
\frac{c_{2}}{c_{1}} & =\beta_{0}, \frac{D_{2} / \beta_{2}}{D_{1} / \beta_{1}}=\alpha_{0}, \psi=\frac{\bar{\psi} S D_{1}}{\beta_{1} c_{1} R T_{0}}, \\
\eta_{B_{1}} & \left.\left.=\frac{v_{B_{1} / A D_{1}}^{c_{1} \beta_{1} R T_{0}}, \frac{P_{2 B_{1}}}{P_{1 B_{1}}}=\omega_{B_{1}}, \frac{T_{1 B_{1}}}{T_{0}}=T_{0}^{\prime}}{\eta} \begin{array}{rl}
P_{1 B_{1}} & =v_{0},\left(\eta-\frac{1}{\delta_{2}}\right) \frac{P_{1 B_{1}}}{R T_{0}}=\delta_{0}
\end{array}\right\}\right\}, ~ \tag{31}
\end{align*}
$$

we get

$$
\begin{equation*}
\left[\phi_{2}^{\prime}\left(f_{2}\right)\right]_{f_{2}=f_{2 B_{1}}}=-\frac{\alpha_{0}}{\beta_{0}} \frac{\gamma_{0} \psi\left(1-\omega_{B 1}\right) / \sqrt{T_{0}^{\prime}}+\eta D_{1} \omega_{B_{1}}}{1+\delta_{0}} \tag{32}
\end{equation*}
$$

For the consistency of (20) and (28), differentiating (28) twice w.r.t. f_{2} and with the help of the equation (14), (23) and (20) we get

$$
\begin{gathered}
\frac{A^{2} D_{2}^{2} P^{2}{ }_{2 B_{1}}}{\beta^{2} \omega P_{1}}-\frac{{ }_{\eta} P_{2 B_{1}} D_{2} \psi S}{2 \beta_{2} \sqrt{R} T_{1}^{3 / 2}} \frac{d T_{1}}{d f_{2}}+\phi_{2}^{\prime \prime}\left(f_{2}\right) \frac{c_{2}}{\delta_{2}} P_{1 B_{1}}-{ }_{\eta} P_{1 B_{1}} \\
\cdot\left\{\phi_{2}^{\prime \prime}\left(f_{2}\right) c_{2}-\frac{D_{2} \bar{\psi} S}{2 \beta_{2} \sqrt{R} T_{1}^{3 / 2}} \frac{d T_{1}}{d f_{2}}\right\}=\phi_{2}^{\prime \prime}\left(f_{2}\right) R T_{0} c_{2}
\end{gathered}
$$

or

$$
\begin{align*}
& \phi^{\prime \prime}{ }_{2}\left(f_{2}\right) c_{2}\left[R T_{0}+\left(\eta-\frac{1}{\delta_{2}}\right) P_{1 B 1}\right]=\frac{A^{2} D_{2}^{2} P_{2 B_{1}}^{2}}{\beta_{2}^{2} \omega P_{1}^{2}{ }_{1 B 1}}+ \\
& \quad+\frac{\eta D_{2} \bar{\psi} S}{2 \beta_{2} \sqrt{\bar{R}} T^{3 / 2}}\left(P_{1 B_{1}}-P_{2 B_{1}}\right) \frac{d T_{1}}{d f_{2}} \tag{33}
\end{align*}
$$

Also from (23) and (24), we have

$$
\begin{equation*}
\frac{d T_{1}}{d f_{2}}=\frac{1}{\left(c_{1}+c_{2}\right) N}\left[c_{2}\left(T_{0}-T_{1}\right) \phi_{2}^{\prime}\left(f_{2}\right)+\frac{D_{2}}{\beta_{2}}, \frac{\bar{\psi} S(\gamma-1)}{\sqrt{R}}\left(T_{1}\right)^{1 / 2}\right] \tag{34}
\end{equation*}
$$

For $T_{1}=T_{1 B_{1}}, N=N_{B_{1}}$ and $f_{2}=f_{2 B_{1}}$ will satisfy (33) and (34) we get

$$
\begin{gather*}
\phi^{\prime \prime}{ }_{2}\left(f_{2}\right) c_{2}\left[R T_{0}+\left(\eta-\frac{1}{\delta_{2}}\right) P_{1 B i}\right]=\frac{A^{2} D_{2}{ }_{2} P^{2}{ }_{2 B 1}}{\beta^{2}{ }_{2} \omega P^{2}{ }_{1 B 1}}+\frac{\eta D_{2} \bar{\psi} S\left(P_{1 E 1}-P_{2 B_{1}}\right)}{\left.2 \beta_{2} \sqrt{\bar{R}} T^{3 / 2}{ }_{1 B 1} c_{1}+c_{2}\right) N_{B 1}} \\
\cdot\left[\frac{D_{2}}{\beta_{2}} \frac{\bar{\psi} S(\gamma-1)}{\sqrt{R}}\left(T_{B 1}\right)^{\frac{1}{2}}+c_{2}\left(T_{0}-T_{1 B 1}\right)\left\{\phi_{2}^{\prime}\left(f_{2}\right)\right\} f_{2}=f_{2 B 1}\right] \tag{35}
\end{gather*}
$$

Introducing the ballistio parameter

$$
M=\frac{A^{2} D_{1}^{2}}{\beta_{1}^{2} \omega c_{1} R T_{0}}
$$

From (31), the equation (35) can be written in the non-dimensional form as :

$$
\begin{align*}
& \phi_{2}^{\prime \prime}\left(f_{2}\right) \cdot\left(1+\delta_{0}\right)=M_{1} \frac{2 \alpha_{0}^{2} \omega^{2} B_{1}}{\beta_{0}}+\frac{\nu_{0} \psi \alpha_{0}\left(1-\omega_{B 1}\right)}{2\left(1+\beta_{0}\right) \sqrt{T_{0}^{\prime}} N_{B 1}} \\
& \cdot\left[\left\{-\phi_{2}^{\prime}\left(f_{2}\right)\right\} f_{2}=f_{2 B 1}\left(1-\frac{1}{T_{0}^{\prime}}\right)+\frac{\psi \alpha_{0}(\gamma-1)}{\beta_{0}{\sqrt{T_{0}}}^{\prime}}\right] \tag{36}
\end{align*}
$$

The consistency of (32) and (36) gives the condition that $P_{1}=P_{1 B_{1}}$ and $P_{2}=P_{2 B_{1}}$ may be the solution of (10) to (17). The connection between the four parameters $\alpha_{0}, \beta_{0}, \phi_{2}$ and δ_{0} defining the second propellant component is clear from the equations (32) and (36).

The properties and mass of the first component are assumed to be known. δ_{0} involves η and $1 / \delta_{2}$ and β_{0} involves c_{2} which are supposed to be known in the integration of equation for the first stage of burning. Thus (32) and (36) give the size and shape of the second propellant component provided α_{0} is positive.

If $\eta=1 / \delta_{2} \approx 0$ then $\gamma_{0}=\delta_{0}=0$, (32) and (36) reduce to,

$$
\left[\phi_{2}^{\prime}\left(f_{2}\right)\right]_{f_{2}}=f_{2 B 1}=-\frac{\alpha_{0}}{\beta_{0}} \eta_{B_{1}} \omega_{B 1}
$$

and

$$
\phi_{2}^{\prime \prime}\left(f_{2}\right)=M_{1} \frac{\alpha_{0}^{2} \cdot \omega^{2}{ }_{B 1}}{\beta_{0}}
$$

Let

$$
M_{2}=\frac{A^{2} D_{2}^{2}}{\beta_{2}^{2} \omega c_{2} R T_{0}}=\frac{M_{1} \alpha_{0}^{2}}{\beta_{0}} \text { be the central balistic parameter corresponding for the }
$$ second component charge.

Then

$$
\phi_{2}^{\prime \prime}\left(f_{2}\right)=M_{2} \omega^{2} B_{1}
$$

Thus within the practical range of values of M_{4} and $\omega_{B 1}, \alpha_{0}$ may be positive. From (21)

$$
\begin{equation*}
v_{B 2}=v_{B_{1}}+\frac{A}{\omega} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B_{1}}}{P_{1 B 1}} f_{2 B 1} \tag{37}
\end{equation*}
$$

then

$$
\frac{v_{B 2}}{v_{B_{1}}}=1+\frac{M_{1} \alpha_{0}}{\eta_{B 1}} \omega_{B_{1}} f_{2 B 1}
$$

which is the velocity ratio and its value is less than the velocity ratio for the moderated charges.
From (20), (13) and (18), we get

$$
\begin{equation*}
\frac{-d x}{d f_{2}} \frac{\beta_{2} P_{1 B_{1}}}{D_{2}}=v_{B_{1}}+\frac{A}{\omega} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B_{1}}}{P_{B_{1}}} \quad\left(f_{2 B_{1}}-f_{2}\right) \tag{38}
\end{equation*}
$$

Integrating (38) taking $x=x_{B_{1}}$ at $f_{2}=f_{2 B 1}$

$$
\begin{equation*}
\frac{\beta_{2} P_{1 B_{1}}}{D_{2}}\left(x-x_{B_{1}}\right)=v_{B_{1}}\left(f_{2 B_{1}}-f_{2}\right)+\frac{A D_{2} P_{2 B_{1}}}{2 \omega \beta_{2} P_{1 B_{1}}}\left(f_{2 B_{1}}-f_{2}\right)^{2} \tag{39}
\end{equation*}
$$

Let $x=x_{B 2}$ when the second component burns out, i. e. $f_{2}=0$.
Then we get

$$
\begin{equation*}
x_{B_{2}}-x_{B_{1}}=\frac{D_{2}}{\beta_{2}} \frac{v_{B_{1}}}{P_{1} B_{1}} f_{2 B_{1}}+\frac{A D^{2} P_{2 B_{1}}}{2 \omega \beta^{2} P_{1}^{2} P_{1 B_{1}}} f_{2 B_{1}}^{2} \tag{40}
\end{equation*}
$$

From (31) we get

$$
\begin{equation*}
\frac{x_{B_{2}}-x_{B_{1}}}{x_{B_{1}}}=\frac{\eta c_{1}}{\gamma_{0} A x_{B_{1}}}\left[\alpha_{0} \eta_{B_{1}} f_{2 B_{1}}+\frac{M_{1} \alpha_{0}^{2}}{2} \omega_{B_{1}} f^{2}{ }_{2 B 1}\right] \tag{41}
\end{equation*}
$$

Introducing another dimensionless quantity

$$
\zeta_{B_{1}}=\frac{\eta c_{1}}{A x_{B_{1}}}
$$

the travel ratio is

$$
\begin{equation*}
=\frac{\zeta_{B_{1}} f_{2 B_{1}}}{\gamma_{0}}\left[\alpha_{0} \eta_{B 1}+\frac{M_{1} \alpha_{0}^{2}}{2} \omega_{B_{1}} f_{2 B_{1}}\right] \tag{42}
\end{equation*}
$$

which is also less than the ratio corresponding to the moderated charges. Differentiating (10) w.r.t. to f_{2} and using (18), (24), (25) and (31), we get

$$
\begin{equation*}
\phi^{\prime}{ }_{2}\left(f_{2}\right) \cdot\left(1+\delta_{0}\right)=-\psi \frac{\alpha_{0}}{\beta_{0}} \frac{\gamma_{0}}{\sqrt{T^{\prime}}}+\gamma \sqrt{T^{\prime}} \tag{43}
\end{equation*}
$$

where $T=\frac{T_{1}}{T_{0}}$. Thus (43) determines T^{\prime} as a function of f_{2}. Equation (24) can be writrea å

$$
\begin{equation*}
\left(1+\frac{1}{\beta_{0}}\right) \frac{d N}{d f_{2}}=\frac{d z_{2}}{d f_{2}}+\psi \frac{\alpha 0}{\beta_{0}} \cdot \frac{1}{\sqrt{T^{\prime}}} \tag{44}
\end{equation*}
$$

On putting the value of T^{\prime} from (43) and integrating (44), we get N as a function of f_{2}.

$$
\begin{equation*}
N=\frac{\dot{\beta}_{0}}{1+\beta_{0}} z_{2}+\frac{\psi \alpha_{0}}{1+\beta_{0}} \int \frac{1}{\sqrt{T^{\prime}}} d f_{2}+B \tag{45}
\end{equation*}
$$

where B is determined by the condition $N=N_{B_{1}}$ and $f_{2}=f_{2 B_{1}}$.
T_{1} and N are determined from (43) and (45) T_{2} is determined as a function of f_{2} from the relation (27).

PARTYOUAR CASES WITHDIFFERENTFORMFUNCTIONS

(i) Let us take the form function given by

$$
\begin{align*}
& \phi_{1}\left(f_{1}\right)=\left(1-f_{1}\right)\left(1+\theta_{1} f_{1}\right) \\
& \phi_{2}\left(f_{2}\right)=\left(1-f_{2}\right)\left(1+\theta_{2} f_{2}\right) \\
& \frac{\alpha_{0}}{\beta_{0}} \cdot \frac{\gamma_{0} \psi\left(1-\omega_{B_{1}}\right) / \sqrt{T_{0}^{\prime}}+\eta_{B_{1}} \omega_{B_{1}}}{1+\delta_{0}}=1+\theta_{2}+2 \theta_{2} f_{2 B_{1}} \tag{46}\\
& M_{1} \frac{2 \alpha_{0}^{2} \omega^{2} B_{1}}{\beta_{0}}+\frac{\gamma_{0} \psi \alpha_{0}\left(1-\omega_{B_{1}}\right)}{2\left(1+\beta_{0}\right) \sqrt{T_{0}^{\prime}} N_{B}} \cdot {\left[\left(1-\theta_{2}+2 \theta_{2} f_{2 B 1}\right)\left(1-\frac{1}{T_{0}^{\prime}}\right)+\frac{\psi \alpha_{0}(\gamma-1)}{\beta_{0} \sqrt{T_{0}^{\prime}}}\right] } \\
&=2 \theta_{2}\left(1+\delta_{0}+\right) \tag{47}
\end{align*}
$$

which are the similar equations as given by Corner ${ }^{3}$
(ii) Further assuming the form function in tabular form given by

$$
\begin{aligned}
& \phi_{1}\left(f_{1}\right)=\left(1-f_{1}\right) \\
& \phi_{2}\left(f_{2}\right)=\left(1-f_{2}\right)
\end{aligned}
$$

assuming $\theta_{1}=0$ and $\theta_{2}=0$, we have the following relations

$$
\begin{gather*}
\frac{\alpha_{0}}{\beta_{0}} \frac{\gamma_{0} \psi\left(1-\omega_{B_{1}}\right) / \sqrt{T_{0}^{\prime}}+\eta_{B_{1}} \omega_{B_{1}}}{1+\delta_{0}}=1 \tag{48}\\
M_{1} \frac{2 \alpha_{0}^{2} \omega^{2}{ }_{B 1}}{\beta_{0}}+\frac{\gamma_{0} \psi \alpha_{0}\left(1-\omega_{B_{1}}\right)}{2\left(1+\beta_{0}\right) \sqrt{T_{0}} N_{B}}\left[\left(1-\frac{1}{T_{0}^{\prime}}\right)+\frac{\psi \alpha_{0}(४-1)}{\beta_{0} \sqrt{T_{0}^{\prime}}}\right]=0 \tag{49}
\end{gather*}
$$

ACKNOWLEDGEMENT
The author expresses his gratefulness to Air Cdre B. Bhatia, Director, Directorate of Research in Basic Sciences for the encouragement in the preparation of this paper.

RETERENCES

1. Aacarwal, S. P., Proc. Nat. Inst., Sci. India 21A (1955), 350.
2. Corner J., 'Theory of Internal Ballistios of Gun' (Johm Willey \& Sons, New York), 1950.
3. Corner, J., Proc. Roy. Soc., 188A (1948), 237.
4. Kapur, J. N., Proc. Nat. Inst. Sci., India. 28 A (1957), 312.
5. . Bhattaoharyya, R. N., Def. Sci. J., 23 (1973), 137.
6. Bhattaoharyya, R. N., Def. Sci., J., 25 (1975), 29.
