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In this note, a liquid layer above a therricelastic haanace is conaldered The ﬁ'equenov equatlon for the waves gene
rated at the interface is obtalned and a few hmltmg ©a308 are diseussed

In a previous paper? the author had studied the frequency equatmn for waves generated at the interface
between two halfspaces one assumed elastic and the other thermeelastic. In this note, it is proposed to
~ study the surface waves propagated at the interface between a liquid layer and a thermoelastic halfspace.
Various limiting cases are discussed!. For the classical case of a liquid layer above an elastic halfspace -
see the lucid presentation? and also the discussion which followa, on geophysxcal studies of water- covered
areas.

BASIC EQUATIONS

~ We set up a cartesian coordinate system (w,y,z) in such a manner that the thermoelastic halfspace
occupies the region z .» H, the hquld layer meupzeso <2< H and z == 0 is the free surface. So, the
thickness of the liquid layer is H and z = H is the interface. For the surface waves propagated in the
z-direction the dmpiacemsnt components are giveh by;

U=¢s—d9 V=0 W=dtds | o
whére the potential functions ¢, ¢ and the temperature perturbation’T.aQtisfy the eqwuations
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where p is the density of the thermoelastm medlum, o ig the isothermal (compresslonal) wave velocity,
B is the shear wave velocity, & is the ccefficient of thermal conductivity, s is the specific heat at constant
strain, y is the ratio of the coefficient of volume expansion to isothermal compreaslblhty and T, is the
equilibrium temperature prior to the appearance of & dmturbance throughout the reglon 2.20.

Assuming the solutions of equations (2) in the form R
(T #) = (T ¢, P expliGz—wt) | - ®)

we ! obtain the solutions given by equations (4) below, where it is clear that T,é,4>0832->00 in
order that surface waves may be described,
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where A? = 8 — g2, Re ();)>0, J= 1‘,2, 8 and »qls; ¢.2 are ‘the roots of’ the equation
B — P [ho® + ot (1 + )] - datps = 0 ®)
where €= y? Te/ soa’ is the couphng consta.nt and ¢,2 ="w?/p8, .
The components of dlsplaeement in the hqmd }ayef:?af t}uckness H is given by
= ¢ V" 0, W= ¢‘ S o (6)

where the potential function q'a' satisfies ‘ \ ‘
B (Few + #%) = ¢ ' o ; (0

where p is the velocity of ﬂm waves i in the hquldg

.~

Let p’ be the density of the hquld P :ta hydroatwtw pmssure and m’ 83-- ¥ b with, Re (,,.)
on-negatIVe The liquid layer is assumed to be mamt&med at the constant temperature Ty

Assuming agaln a mmple harmonic time dependence fact:or exp (—Mot), we obtain
# = (4™ | B ditm=n .
?a,,,,,,,,. | S Y« ®

The constants 4, B, Cin (4) and A, B in (8) lwre to be . detemnmd by umng the bounda.ry

g

1

conditions. | R L
BOU DARY'CONDITIONS
We impose the following conditions :
© (a) At the free surface P =0 o o | R
(b) Across the interface z="H . Q‘ SREE
0,..-_—:}7, Oy = 0O, T::O W.—.:W’, )
where the Stresses o, -+ o are given by : 1 '
0u = poX(Pm + Pu) 208 (Ver—d) — 9T » o
ou= Pt Ve ,_ ®

It is to be noted that no condition on the tangential diaplgcegiegtg ¢an be imposed at the interface,
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FREQUENCY EQUATION
By the use of the above five boundary conditions on z =0 and z = H we obtain homogeneous

equations for the five constants 4, B, C, 4’ B’. These have a nontrivial solution only when the matrix
of the coefficients of 4, B, C, 4’, B’ is singular, This determines the frequency equation to be

e e o . 0 0
iwp’ iwp’ P28 —a?) . p(2PF—w?)  —2i\SpfR
0 2@\132 L 2iaAgr 28— | =0
0 WilgE wratgl 0 |
m —m [P —Ag 8

OR 7 . \
[ p'w?® tan (imH) — 4pmdR, ﬁ‘} [m’ (Mg — 290,%) — @ (4 —4,) ] =
, = 25— o2 (g — &) (10)
It is to be noted that equation’(10) is the thermcelastic version of. the equation (4 ~154), given by
Ewing?, et.al. As a remark, we can add that (10) cannot be deduced from the more general frequency

equation for waves at the interface of a solid ‘halfspace with a solid layer above by merely assuming one
of the Lame constants to be zero. Hence, a separat»e atudy of t;he hquld aohd interface is necessary.

LIMITING CASES

BN

There are various lumtmg cages and moat of these are dlscussedl Here we merely discuss the forms
of the frequency equation for large and small frequencies (@) when the wave number (3) is fixed. The
other cases for large and small wave lengths when the frequency is fixed and also for small values of the
coupling constant may be obtained on lines similar to those in the author’s earlier paperk

(). For large frequencies: Suppose w >>>1 and 3 is fixed. In case the liquid layer is also very thin (i.e.
H << 1), the frequency equation (10) takes the form

2ik8 (p'H — pa).c® -+ pplseHad. & Biphd83.c — 4pPsalef® = 0 (11)

where ¢ = ®/8 measures the phase-velocity ( = [Re.(1/c)]™?) and the attenuation in the z-direction
= o (I (1/0)])
Putting € = 0in equation (11) we obtain
A [p'H — pa] = 4pf° : - (12)

which is nothing but equation (4—154) in Ewing?, et. al. for w >> 1 and H <<  1. In the general case
when @ >>> 1, the frequency equation (10) takes the form :

[¢'wp tan (wH/p) — 4p8F°] (psea® + k) — 2ipkaa® =0 ‘ (18)

Various cases of interest, viz. 0H< !’f_‘_".
w

for real values of @ of (13) may be discussed.

(%) For an incompressible solid: For an incompressible solid we know that the compressional wave
velocity is infinite. Hence if the thermoelastw hal{space zéH is mcompresslble equatmn (10) takes the
form

m (26282 — i) + p'8wt tan (imH) — 4pm¥ply/P — Y F =0 (14)
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For large or amall values of the frequency @ when & is fixed (14) may be ejifa.luated.
(i48) For small frequencies: Suppose w << 1 and 8is fixed. Then the frequency equation (10) takes the

form o S : N '
. P 2F8 — WMt gt tan (iSH) — 4p8tp4 =0 g

which shows that the phase veloeity and the attenuation are indepehdent of the compressional wave
velocity & and hence for small values of the frequencies, (14) reduces to (15) simply by replacing m by &
and neglecting ' w?/B% - V y ‘ .

]

' CONCLUBIONS

In all the limiting oases considered above it.ean.be observed that the wave velocity depends on the
frequency and hence there is dispersion. In other words in equations (11), (18), (14), (15) @ and 8 are
always coupled whereas in the elastic case (equation (12)) w is proportional to 8. Thus the dispersion
which is absent in equation (12) but present in the other equations is due to the introduction of temperature
perturbation. Further for small frequencies; the compressibility of the solid hias no influenee on the frequency
equation as shown by equations (14) and (15). The above results have direct bearing on defence studies
of underground explosions, whether they are caused by nuclear deviees or conventional ones. These enable
us to compute the intensity and the frequency of the shock waves thus generated.
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