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Due to monotonically increasing internal pressure, a thick spherical shell of rigid plastic ductile material undergoes 
plastic deformation. Using Thomas' fracture theory, the critical pressure that causes fracture and the velocity as 
well as the stress fields during plastic flow, are estimated by analytical method. 

In this paper, we consider a spherical shell of rigid plastic ductile material, which is loaded by monotoni- 
cally increasing internal pressure. The internal pressureis completely specified by a -given law. In the 
initial strtges when the internal pressure is gradually increased, the shell will, in general, remain I igid; but 
if it is incressed further, a stage will arise when the inner surface of the body begins to yield, and gradually 
the plastic deformation, spreads over the whole bddy. i , 

If the material is perfectly plastic (i.e., non-strain-hardening) and if the resulting change in geometry is 
disregarded, then under the assumed monotonically increasing internal pressure, there will be ccmsiderable 

> 
amount of plastic flow before the body finally fractures. 

The aim of this paper is to dGermine the stress field and velocity components during plastic flow as also 
the critical pressure at which the spherical shell fractures. . . 

The following are the basic assumptions :- 

1. The volume of the spherical shell does not undergo any change during plastic deformation and flow 
so that the incompressibility condition is satisfied t,hroughout. ' - 

. 2. The shape of the shell is assumed to be spherical throughout the plast;i'c flow even at'the moment 
when fracture occurs, though i t  may not be so in the real situation. 

3. When fracture occurs, the following fracture condition is satis6ed': 

The constants q and Q arepacture rngdzcli for ductile materials whereq is much smaller than Q, when ex- 
peised in the usual units. Also the quantities s, and s, are algebraically the greatest m d  the least of princi- 
pal stresses a t  points of the stress field under consideration. No difficulties will arise from strain hardening 
in the treatment of the ductile solids, since there is sufficient leeway in the inequality in (1) to permit 
this effect without changing the values of the moduli q and Q. 

J 

F O R M U L A T I O N  . O F  T H E  P R O B L E M  

In the fitness of things, the spherical p o l ~ r  co-ordinates are chosen, with the centre of the sphere as 
the pole. For free use of tensor not&tion, t h p ~ d k t e s  r, 8, + are respectively denoted b j  XI, x2,$. 

In the usual n o t a t i d  the incompressivility and equilibrium conditions ate respectively - 
. . 

gsJ Vi,j, = 0 (i, j =.1, 2, 3) (2) 
and 

gjk q, t = 0 (i;j = 1,2,3), (k = 1,2,3) (3) 

Following Thomasa, the equation ofthe plastic flow of the material reduces to 

<ij = $ ( T ) .  04 (i, j = 1,2,3) 
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where ~ i j  is therate of strain tensor, a$ is the stress deviator and #(r)  is a positive function of the material, 

The boundary conditions for the problem can be stated as : 

, a i l  =--p,  when r  = a, 

011 = 0, when r =  b 

8rd 3 . , 

The values a and b dr note the inner and outer radii of the shell a t  the instant of fracture, and the qurmtity 
p, the ritical internal pressure which causes €facture in the shell. 

As a consequence of the incompressibility assumption, we have the quality 

'I (18 --aa) = (hb8 - a:) , = 16; (say) (6) 

where a, and bi, stand for internal and external radii respectively of thelsheU, before plastic deformation, 
. . 

~ N A J I P S I S  

At the outset, due to symmetry of the system, we note that a ; j  and vi are functions of r  and time t onlv' 

and also that u , ~  = 0, if i + j. 
f 

i 

The three eqGlibrium cmditions in (3) reduce to 

and 

The third one turns out to be an identity. 

The six equations of the plastic flow (4) can be expressed in the form : . 
C 

1 
rv1 = - Q (- r2 011 + 022) 3 (10) _ 

1 
r  sin28. vl + sin0 cod. v2 = a + ~ i n 9  (- r2 ol 1 + 0%) (211 

1 av3 1 - - - - v 3 = * o ;  7 0 ,  ( * #  0) 
2 ar r  (14) 

From (lo), (11) and (13) we obtain 

v2 = 0 and v3 = 0 

since ml is clearly positive, i t  follows from the equation (10) that 9 1 o u .  



I 
' Thus the maximum and minimum principal @e~s components a h  respectively 

, 

- 
We rewrite the fracture condition (1 )  as : 

i 

sl = A +  B s ,  - 

-2Q where A = and B = (I+qs)* -- q 
(1  + z2,t + q ( 1  + 914 +q 

- -  --- -- - - 
Here we have taken ( 1 )  as an equality, as it does not-@ve riP to any qualitative change in the result. 
Also we note that B < I . ,  

f- 
) 

The fracture condition now becoines - 

Eliminating az26etween ( 7 )  and (17),  we find 

aul l  - 2A 
ar 

+ 7ull = -- 
T (18) 

where O < % =  ( 2 - 2 B ) < 2  . (19) 
- The above equation, on integration, gives 

\ 
-* .', 

2A A Q where f (t) is the constant of integration depending on t only and - = ----- - - . 
n ( 1 - B ) -  q - 

Use of the boundary conditions (5) in (20.) &ves. - 

which gives the critical internal pressure when fracture occurs. 

The insertion of (21) in (20) gives 

Again, from (23) and (17), we get . . 



and from (8), 

Prom (23), (24) and (25), we conclude that the plastic stress field is dependent only on r and indepen- 
dent oft. 

< - 
In order to investigate the velocity component v,, we see, in view of (15), that the incompressibility 

equations (a), when expressed in the explicit form, reduce to a single equation 

which, on integration yields : 
I r2 v1 = +(t) (27) 

where +(t) is the time dependent constant of integration, 

Using (lo), (23) and (24) in (27) we obtain 

Q(t )  is independent of r ,  the (28) will be valid only if #(r)  = -, C0 where C, is some constant. 
\ 

" then we let 4. = $(bJ = F,  \ 

The constant 4, depending upon the material is a positive quantity and can be assumed to be known. 

Now, (27) tPget7,er-with (28) and (29) gives the velocity component 

In all)the equations (22) through (25) and (30). the unknown quantity b, namely the outer radius of the 
shell at  the instant of fracture, is involved. The work will be complete if the value of b is expressed in 
terms of the known quantities $,; Q, q, no, b, etc. To this end we now make use of the energy 
principle8. 

The internal pressure P is a function P(t) of time t .  But the parameter t can very well be replaced 
by any other parveter  which is monotonically increasing as t increases. The inner radius p at any time 
t suits well for this purpose. Accordingly, we denote the internal pressure function as P (p) and specify it 
by some simple law, say 

Po 
P(P) = - P 

no (311 

Initially, when p = a,, P(ao) = Po = constant. < .  

The value of P, (vide Hoffman & Sachs)4 is found4 to be 4K log (2)- 
Now the total energy input E is given by' I 



r 1 . L 
Therefore, time rate of total energy input- < 

a 
dE (as - a t )  

a0 

Also the total plastic work done over the whole volume in unit time, denoted by WP, is calculated as : 

where use has been made of (23), (24) and (30). 

dE 
The equality of - and Wf-' yields 

d~ 

?& (4) -1 = (b3 -JC3S)n13 Am - 1 %(l - 
nk',s 

(33) 

Y-  
, % 

3 6  

where second and higher powers ofko8/bl are-omitted, sin~e*~s < by Rearrangement of (6) gives 

a3 - no3 , . b3 - bO3 P (34) 
From (32), (33) and (34), we obtain 

. 

.bs - b03 bs - Atn = O (35) 
where 

, 
, 

is a large quantity, and 0 < n < 2. , 
It is easily verified that for known values of bo, n and A, the (35) has a real root, srp c > 4 giving 

ma outer radius of the spherical shell a t  the instant of fracture. \ .  

It is generally a hazardous task : o extract the roots of the (36). However, a lower bonnd for 6 can . 
be construoted 'by the following quasi-linenrizatio~ technique and thereafter numedeal methds can be 
a d o w  lo  dnd  the best approximatioq for b. 



Dividing by b,B b6, the (35) reduces to # 

x + Pxrn = a I 

A positive so1ut:on can be represented in the ana1yt:c formi 
- 

* 

or, equivalently 

1 if we recall that =- 
b3 

Thu : 

1 1 
for any value of y # - and the equality is attained for y = --- . bS b3 

Once the values of a, /I and m are known foP the material under consideration, the appropriate 
choice of y and hence the lower bound for b namely c, (which is known to be greater than b,) can be easily 
calculated. L r 

Rewriting (36) in the form H(x) E X  + /3xm - u = 0 (40) 
1 

it is observed that Newton-Raphson iteration method may be adopted by taking - as the initid appro- 
cnS 

ximation for x in (40) [since the sufficient conditions for convergence of this process i r e  seen to be satisfied 
by the function H (x)] and hence the value of b, the outer radius of the shell at  the bstant of fractwe may 
be obtained for sufficient degree of accuracy. 

When the value of b thus obtained is substituted in (22) through (25) and (30), the stresq and 
velocity fields during plastic flow as also the critical pressure that causes fracture of the shell are com- 
pletely determined. - 

A8 an application of the above theory in Defence'Science and Ordnance Factories, we can cite the 
generation of a shock wave by an explosion of chargee in the form of spherid, cylindrical and rectangular 
blocks. The symmetry of the spherical charge makes it the easiest type of charge to analyse from the point 
of view of hock wave configuration as the explosion products expand radially. The calculation of critical 
pressure under which the spherical shell fractures can be utilised to select the most appropriate metal 
or alloy for manufacturing shells which when fired can cause maximum amount of destruction by splinters. 
Also proper mixing of explosives can be effected so as to have the optimum critical pressure. 

By taking cylindrical co-ordinate system, the analysis may be re-constructed for use in design and 
manufacture of suitable gun barrels where autofrettage principle is employed. 
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