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Due to monotonically mcrea.smg internal pressure, a thick spherical shell of rigid plastic ductile material undergoes
plastic deformation. Using Thomas’ fracture theory, the critical pressure that causes fracture and the velocity as
well as the stress fields during plastic ﬁow, ‘are estimated by ana,]ytxca,l method.

- In this paper, we consider a spherical shell of rigid plastic ductile material, which is loaded by monotoni-
cally increasing internal pressure. The internal pressureis completely speclﬁed by a given law. In the
initial stages when the internal pressure is gradually increased, the shell will, in general, remain rigid; but
if it is increased further, a stage will arise when the inner surface of the body begins to yield, and gradually
the plastic deformatlon spreads over the whole bddy. . N

If the material is perfectly plastlc (i.e., non—stram—hardening)’ and if the resulting change in geometry is
disregarded, then under the assumed monotomcally increasing internal pressure, there will be considerable
amount of plastic flow before the body finally fractures

The aim of this paper is to determine the stress field and velocity components durmg plastic flow as also
the critical pressure at which the spherical shell fractures. -

The following are the basic assumptions :—

1. The volume of the spherical shell does not undergo any change during plastlc deformatlon and flow
50 that the incompressibility condition is satisfied throughout. = - ;

. 2. The shape of the shell is assumed to be spherical throughout the. plastxc flow even at’ the moment
when fracture occurs, though it may not be o in the real sﬂ;uatlon

3. When fracture occurs, the following fracture condition is satisfied!: ’
[+ +q) 1 —[1+ ¢ —g)es; > . 1)

The constants ¢ and @ are fracture moduls for ductile materials whereq is much smaller than @, when ex-
pressed in the usual units. Also the quantities s, and s, are algebraically the greatest and the least of prineci-
pal stresses at points of the stress field under consideration. No difficulties will arise from stram hardening
in the treatment of the ductile solids, since there is sufficient leeway in the inequality in (1) to Pel‘m]t
this effect without changing the values of the moduli ¢ and Q

FORMULATION OF THE PROBLEM

In the fitness of things, the spherical polar co-ordinates are chosen, with the centre of the sphere as
the pole.- For free use of tensor notation, theeo-ordinates , 6, ¢ are respectively denoted by a1, 22, 23.

In the usual notatmf, the 1ncompressw1hty and equilibrium conditions ate respectively -

99 vy =0 (3,5 =1,2,8) ‘ : @)
and | , 3
9% 0,4 =0 (i,§ =1,2,3), (k=1,2,3) : ®)
Following Thomas?, the equation ofthe plastic flow of the material reduces to
&= P(r). ofj (i, =1,2.3) , : n
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where ¢;; is the rate of strain tensor, afj 1s the stress deviator and $(r) is a poSitive fuﬁction of the material.
The boundary conditions for Fhe problem can be stated as : » |
Lon =_-;-p,, ~whef1 r=a, » , v
< S ' o = 0, ﬂ‘len'r=\b _ - ‘ . ()
ard - > ‘ |

The values ¢ and b dc note the inner and outer radii of the shell at the instant of fracture, and ‘the quantltyr
P, the ritical internal pressure which causes fracture in the hell

As a consequence of the mcompreqsnblhty assumptlon we have the quahty

D

(03 —at) = (B3 — a) = k3 (say) S ©
where g, and b; stand for internal and external radii respectively of the'shell, l;efore pléétic défofinafoion,‘ '

4 ANALYSIS o " i
At the outset, due to symmetry of the system, we note that aij and o; are functions of 7 and time ¢ onlv

and also that o, = 0, if ¢ # j.. L
'~ The three equilibrium conditions in (3) reduce to - '

¢011 2 4 2 ‘V : : . '
SE gm0 Lo
; ‘ TN
and :
Ta2 O3 T :
7 T r2gin20 ' (8

L

The third one turns out to be an identity.

* Thesix equatidns of the plastic flow (4) can be expressed in the fdrm ¥

w2 [ g ' ST , A
BT ln—2) | S
oty = §~'/' (-—-r( 0_“ux+ ) S (10y 5
r 5in20, v} - sind cosh, v, =§ ¢ gin® (— 12 oy + ',725) ‘ ) (11}
1" 30 1 | | A h .
3 ,";;—7 %= Yot =0, o # 0 _ 2
—cotd. v, =Y ofs =0, (¢ # 0) o o @3y
1;30 B | < e L , ‘ k )
3 o= u=doh= 0, (% #0) | 4
From (10), (1) and (13) we obtain _ | )
u vz_Oandva_O o sy

~Since rv; is clearly positive, it follows from the equation (10) that % > 01).
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. , o
" Thus the maximum and minimum principé'lb stress components are respectively -
81“‘= —;‘?— nﬁa’ Ba :- ;;;l 1 R -
" We rewrite the fracture condition (1yas: | ' : e
S \ :
srl._=A+Bs‘3 o . C e -
R '20 : (1+q=>i~—q‘ B
' Here we have taken (1) as an equality, as it does no?é\—r;, rise to any quahtatlve change in the result
Also we note that B < 1., k4
* The fracture condition now becomes == '
g ' .
| - =4 + Boy S (17)
Eliminating o3, between (7) and (17), we find B .
J011 " __7 24 ' E i '
EREaCE 3 | a8
where , ‘ 0<n= (2—2B) <2 | L @9
The above equation, on iiitegraﬁon,vgiVesf\ﬁ oo A - =Ly '
oy Q ™ S R |
( oy = +f (t) o ) Y (20)
where f (t) is the consfant of integration depénding on ¢ only and —2% = (I—A_B} = ?Q- .
Use of the bounda.ry conditions (5) in (20) gives. ‘
B —~'A, ’M »""‘f, »T,:/: - : " A . -_‘ A/ ,: B - e A.f(t) S —?—b’ , . »\r . ~ "‘ . ‘ . t' ‘ ; (21) N
and. ‘ ' o , T A N
- ¢1(5)~1] Sl
p= ?[ 7.).“,1,._ SRR o
or ) “‘ oL T . . A} ’
P=-“zmm—1] @
which gives the critical internal pressure when fracture occurs.. “
The insertion of (21) in (20) glves o ’ ﬁ : I
J '011=T 1‘—-—’_') ‘ o , - o (23)
Again, from (23) and (17), we get . ' L
‘ e Q b\*] . o .
O () I
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and from (8),

A= (] -

From (23), (24) and (25), we conclude that the plastic stress field is dependent only on r and indepen-
dent of t. : . \‘ ‘ -

’

‘ [ ' . . i
In order to investigate the velocity component v), we see, in view of (15), that the incompressibility
équations (2), when expressed in the explicit form, reduce to a single equation
‘ v 2v
A S Rt

A o e

which, on integration yields : , \ . _
/ Py, = $(¢) : ‘ v C@n
"where &(¢) is the time dependent constant of integration,
Using (10), (23) and (24) in (27) we obtain

4 . )
$(t) = -g-!ﬁ(r)b“faf’f - o (28)
Since ¢('t) is independent of , the (28) will be valid c.mly if n/;(r)\': .———:ﬂn , where (; is some constant.
x\\v ) . . C ) .
we let Y, = P(by) = 5’3%7’ then e
X ‘
b, \&" ’ ' . :
$(r) = '/'.m(—,:.) s , (29)

The constant ¢, depending updn the material is a positive quantity and can be assumed to be known.
Now, (27) toget:: er with (28) and (29) gives the velocity component '

Y ‘ y ¢0 bns-—-n o 1' . .
: 3 B T ~ (30)

In all'the equations (22) through (25) and (30), the unknown quantity b, namely the outer radius of the
shell at the instant of fracture, is involved. The work will be complete if the value of & is expressed in
terms of the known quantities Py @, g, @y, by ete. To this end we now make use of the energy
principled. o ’ ‘

vy =

The internal pressure P is a function P(f) of time¢. But the parameter # can very well be replaced
by any other pargmeter which is monotonically increasing as ¢ increases. The inner radius p at any time
¢ suits well for this purpose. Accordingly, we denote the internal pressure function as P (p) and specify it
by some simple law, say ' ‘ ’

P : ‘
. P(p) = 72- P . : G
Initially, when p = ay, P(a,) = P; = constant. | '
< : b
The value of P, (vide Hoffman & Sachs)* is found* to be 4K log ( —ai ),

» . o :
Now the total energy input E is given by’ N o . )

a a
, R . 4 £~ P,
- . ’ E= ’fP(p) dnpldp = ‘J‘47r —f p2dp
R - 0
by

(7 .
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Therefore, time rate of total energy input.

a o :
dE " ) Pg .8.'3 - 41TP9 8 __ 48 -
= [ oy - e

ae

Also the total plastié work done over the whole volume in unit time, denoted by W2, is calculated as :

. N i b - - ) N
. ) @ € . €55 . .
sz,f( o1y €13+ ‘7?— ",% + ,,.2Si;320 ',rzsial:ze)ti“rr'rﬂ dr ’ e
) a e ,
/ b - : e
. v Tog: U4 S
=[(on 22 + 252 ) 4emar
a e f r_
44, Q b b (_;_ ay
= N 3q Var —
where use has been made of (23), (24) and (30). R ‘ . o
_‘ The equality of %—15— and W? yields ' ' S -
| Py s‘ 3 - A'ﬁoé”o’“b" A I ) ) ,‘ G oo
Using (6), Wwe write ‘ ¥ |
| b )n " DA TRCLY
N
a b —k3)ms B ,
( o°) )
- _nkg® o :
. ; ST 3 ‘ L B
where second and l\zigher.‘pdwers of kgd/b? are ‘omitted, since k3 < b8, .Rearrangemenf of (6) gi-Ves
; i ‘ . - " d3_...a03 =.b3;b03 — (} /; . | (34)
. From (32), (33) and (34), we obtain
B b A =0

(35)
where . 5 o
)A _ AQdy ay b nk 3
I . 9P g
is & large quantity, and 0 <n < 2. .

e

It is easily verified that for known values of by, # and A, the (35) has a rea

: ‘ 1 root, sa jving
the outer radius of the spherical shell at the instant of fracture. . y ¢ > by giving

A

It is generally a hazardous task '1<; extract the roots of the (35). However, a lower bound for & ca:
be constructed by -the following quasi-linea;riza’t{i(m technique and thereafter . ical s car bo
 adopted to find the hest approsimation for b, Aniqu v numerica, methods,lca.nT be

: o 18}
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N .
Dividing by b2 %, the (35) reduces to \ ’
. : T + Bmm = g ]
1 1 ~ A
where ) $=4§,ot=b—u§>0, ﬁ=‘l¥§ >0 l> (36)
6-—n I |
a.nd\ 2>m= 3 >1 Jl
A positive solution can be represented in the analytic form? ,
. " _ min oc+,8(m~l)y’”]
: Ty [ 1+ Bmy™! N
or, equivalently
1+ Bmym—l 113 .
b— [m'lw{ |
y UwtBm—Dg | (%)
. ; 1 '
if we recall that =4
} ‘ 14 Bmy™ - '
Thu v b = [ rx—}—,B(m—l) ym ]_00 (sa'Y) ‘ . (39)

for any value of y # —;1; and the equality is attained for y = —;—3 .

Once the values of o, B and m are known for the material under consideration, the appropriate
choice of y and hence the lower bound for b namely ¢, (which is known to be greater than b,). can be easily -
calculated. - o S

Rewriting (36) in the form H{z)=z + pe™—a =0 . (40)

it is observed that Newton-Raphson iteration method may be adopted by taking 713 as the initial appro-
(\) .

ximation for # in (40) [since the sufficient conditions for convergence of this process are seen to be satisfied
hy the function H (x)] and hence the value of b, the outer radius of the shell at the instant of fracture may
be obtained for sufficient degree of accuracy.

When the value of b thus obtained is substituted in (22) through |(25) and (30), the stress and
velocity. fields during plastic flow as also the critical pressure that causes fracture of the shell are com-
pletely determined. ‘

"~ As an application of the above theory in Defence’Science and Ordnance Factories, we cap cite the
generation of a shock wave by an explosion of charges in the form of spherical, cylindrical and rectangular
blocks. The symmetry of the spherical charge makes it the easiest type of charge to analyse from the point
of view of hock wave configuration as the explosion products expand radially. The calculation of critical
pressure under which the spherical shell fractures can be utilised to select the most appropriate metal
or alloy for manufacturing shells which when fired can cause maximum amount of destruction by splinters.
" Also proper mixing of explosives can be effected so as to have the optimum critical pressure.

By taking cylindrical co-ordinate system, the analysis may be re-constructed for use in design and
manufacture of suitable gun barrels where autofrettage principle is employed.
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