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The temperature distribution in a slab of constant thickness with one face of the slab at constant temperature and
the other exposed to a transient temperature field, has been obtained using the method of differential operator.
Numerioal values of the temperature field are found by taking the a,pphed temperature as a continuous function of
the length and time. . .

In arecent paper, Charles J. Mau'tin1 has used Fourier Transforms and theory of complex variable
for the determination of temperature distribution in an infinite slab of constant finite thickness due to

the - application of transient temperature field. He discussed in detail the problem by teking the
‘applied temperature as a product of two discontinuous step-functions. This paper is concerned with the

determination of the temperature distribution in an infinite slab of constant finite thickness due to the appli-
cation of a iransient temperature field at one face of the slab. The other face of the slab is maintained at
constant temperature. The solution of the heat conduction equation is obtained by ‘Symbolic Method’
in terms of differential operator52 when the applied temperature is a continuous function of length and time.
Numerical results at successive times are obtained by approximating the solution to a finite series.

Results are presented by graphs

» THE PROBLEM AND ITS SOLUTION

Using the rectangular Cartesian system of co-ordinates , y, 2, let the infinite slab be bounded by two
parallel planes y==0 and y=» and be-infinite in extent in x and ¢ directions. The face y=0 is maintained
at zero temperature while the face y=h isexposed to a eontmuous surface temperature Whlch varies Wrth

2 and the time .

- The teraperature 6 in the slab satisfies the linear heat conduction equationd . . ’
2 L '
V3 = 5 e’ M
where
. 52 g2 ,
v Tt » @

and &, p, c are the thermaJ, eonduetlwty, densﬁy and spemﬁo heat of the material respectwely

Sinoe the face y=01is ma.mtamed at zero temperature and y=his  exposed to temperature, the boun-
dary conditions are : ‘

0(x,0,¢8) =0, for all z and ¢ . 3)
0 (@, h,t) =106y .f (z) . () B @)
where f (z) and ¢ (t) are functions of # and ¢ which are continuous and continuously differentiable,
~and | S o
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On substituting S
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and the boundary oondltlons are :

T(?i6 0, w)=0,
L e = W) b ®)
S =H@e) sy |

" On writing p= —"‘;% and ¢ = -a-% , the heat. conducsion equ\ation (7), on using the boundary .
condltlons (8) yields ~ "~ -~ ‘ |

/ | T;ﬂﬂ%%%Hmw | O

- NUMERICAL EXAMPLES

In thls sectlon, we take some particular type of anphed surface temperature to 111ustrate our problem
Two cases are discussed. :

Case—-]_. Taking the appliedvsurfaoe temperature as ‘ . '
— {aglul +bylof) . .
H (u, w)_zA,,e T aa b >0 (10)
Substltutmg (10) in (9) and after some caloulationn, we get - :
g #i0 0 A /@ by - = (anlul+Bylw))
I= ZA,,“ S V(@3 by “

Now by giving sultable values to the constants an, by, and Ay, it is easy to find the:nnmenoal values_ -
when ‘the applied temperature function is any sine, cosine, hyperbolic sine or mr’%hc cosine func-
tions of z and ¢.

a1

Case—II : Taking the applied surface temperature as:
- e~hiy ] :
H (u, w) w'm, wZz0,b>1 ) 12)
Putting this valve in (9), we get / | _
sin v 4/ —
;;;@—~¢() g

For numerical evaluatlon of the temperature distribution in the slab, we take a=0-1 a.nd b—?nr

U

Now the expressmn for T gwen by (13) is expanded as infinite series in powers of q in the form

(14)

where
1 S ,
F (w) == m . ¢“((f,) . : ‘ (15) .

The expression for T in the form of equation (14)is =~ - N
v cos bv_ 1 f o2 sin bv vcdsbv) ¢ l(vaco'sbv

b i ——— e h —= — —
T = o [ sin by — g 9 2l T Ja3lTe
3yzsm bv | 8vces bw : v‘*sm bv 6v® cos by 1502 gin bv
T T 3{‘“24 oot T T e T

bvorsby gt 1 (— F eos by 0t cos by - 450% cosb 105t sinby

| el 45 T+§5_ 5 o < g — —
10v cos S ,‘ ' o

. _—_-5#)—5?4-, .............. ]F(w)_ e e (16)
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The eoeﬁiment ya in (14) are functions

of v and the sequence {y,.} is seen to be rapldly eonverge;nt
The ﬁqua.tlon .@5) oan be Wmtten as ’ ]

e 3‘(«»’)=(Z«n - ) @ O m
- S Dr S IR
Th» sequeneo«{oc.}\deoreases in mavmtude rapldly The first six o' 's are calculated '
= 005305165 R | TR
u,,, 0-00014931 SR e e
ay= —0:00002404 . [P
%= —100 x 024 " _ P
= 1078 X 0-177 -7.*::':-# R ,;;;;;:': - m;._..v,w.:’
B ‘.
Now expandmgthe function ¢ (w) a.bout any arbfbmsypomt iE,byTaylor & Beries, wé get. Vo
| | e ~§¢ (6) = “""5’ AR ' e
where ¢y (£) is the nth derivative of ¢ (w)~a .

- he. terms in the equation (181_; ' YAy yA enifud the ows«tqms can be taken
,for approxupatwn of ¢ (w) Thus tb.e ﬁmctx B _;(15) is oftheform

F (w) = ; ' -

B O

‘-,\ L e (19) )
where B, are function of £,

Tha coeffizients B, (n = 0,1, 2

P | \.r : ;« =
g ¢3 () = (n+ 3) &5 ign+3 S - ; T
., ZO -
. .‘,.“..*,«. . -

z (n + 4) [ ds ﬁn-};“*’ IR ST
B : o - ~
Clsarly the ooe!ﬁment By = 0, since- ¢ (a;) and-allits d.anvat;w;s tend:to Zero as w~ 0, -
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Fig 1—-Tempera.ture distribution at various time in the
slab at 9=1/3.

Fig 2-—Temperature distribution at various time in the
] sla.fléa.t 2=4%. :

Now the expression (14) for T for values of near f takes the form 7"‘;"

T = b [Zm HZ B (0 — &9 _, e

n_

Setting w = ¢, the general expressions for T‘bécomes e

— —bmz"*l)’uﬁm | o : ;(21)

n=1 _

Tt can be seen that the terms of this finite series decreage very rapidly.

DISCUSSION OF THE RESULTS OF EXAMPLES

In this section we discuss in detail the numerical examples considered in Case IT of last section. For
=1/3, @ = 1, the first term in (17) is 30311043 X ¢~** and the third term is —0-00000018 X ¢~%[".
Values of temperature T, with & at v = 1/2 and 1/3 for various values of 2 (b = 0,1,5,10) are calculated

and shown in Fig. 1 and 2 respectively.
From Figures following observations are made :

(¢) The temperature zero when % -»00, w ->c0. :

(%) The fall in temperature as u increase is very rap1d whereas with the increase of time, the fall in
temperature is slow.

(4it) At v=4%, the temperature is negative but is qulte small in magnitude.

() It is 1n';erest1ng to note that the values of the temperature at v=% is one-third the values
at v=
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