TRANSIENT TEMPERATURE DISTRIBUTION IN AN INFINITE SLAB

G. K. Dhawan \& B. R. Nayak*
M. A. College of Technology, Bhopal
(Received 3 April 1974)

The temperature distribution in a slab of constant thickness with one face of the slab at constant temperature and the other exposed to a transient temperature field, has been obtained using the method of differential operator. Numerioal values of the temperature field are found by taking the applied temperature as a continuous function of the length and time.

In a recent paper, Charles J. Martin ${ }^{1}$ has used Fourier Transforms and theory of complex variable for the determination of temperature distribution in an infinite slab of constant finite thickness due to the application of transient temperature field. He discussed in detail the problem by taking the applied temparature as a product of two discontinuous step-functions. This paper is concerned with the determination of the temperature distribution in an infinite slab of constant finite thickness due to the application of a iransient temperature field at one face of the slab. The other face of the slab is maintained at constant temperature. The solution of the heat conduction equation is obtained by 'Symbolic Method' in terms of differential operators ${ }^{2}$, when the applied temperature is a continuous function of length and time. Numerical results at successive times are obtained by approximating the solution to a finite series. Results are presented by graphs.

THE PROBLEM AND ITS SOLUTION

Using the rectangular Cartesian system of co-ordinates x, y, z, let the infinite slab be bounded by two parallel planes $y=0$ and $y=h$ and be-infinite in extent in x and z directions. The face $y=0$ is maintained at zero temperature while the face $y=h$ is exposed to a continuous surface temperature which varies with x and the time t.

The temperature θ in the slab satisfies the linear heat conduction equation ${ }^{3}$

$$
\begin{equation*}
\nabla^{2} \theta=\frac{\rho c}{k} \cdot \frac{\partial \theta}{\partial t}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \tag{2}
\end{equation*}
$$

and k, ρ, c are the thermal conductivity, densty and specifio heat of the material respectively.
Sinoe the faoe $y=0$ is maintained at zero temperature and $y=h$ is exposed to temperature, the boundary conditions are :

$$
\begin{align*}
& \theta(x, 0, t)=0, \text { for all } x \text { and } t \tag{3}\\
& \theta(x, h, t)=\theta_{0} \cdot f(x) \cdot \phi(t) \tag{4}
\end{align*}
$$

where $f(x)$ and $\phi(t)$ are functions of x and t which are continuous and continuously differentiable, and

$$
\left.\begin{array}{c}
-\infty<x<\infty \\
0<y<h
\end{array}\right\}
$$

On substituting

$$
\begin{align*}
& u=\frac{x}{h}, v=\frac{y}{h} \tag{5}\\
& \omega=\frac{h t}{\rho}, c h^{2}, T=\frac{\theta}{\theta_{0}} \tag{6}
\end{align*}
$$

We have

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial u^{2}}+\frac{\partial^{2} T}{\partial v^{2}}=\frac{\partial T}{\partial \omega} \tag{7}
\end{equation*}
$$

[^0]and the boundary conditions are :
\[

\left.$$
\begin{array}{rl}
T(u, \theta, \omega) & =0, \tag{8}\\
T(\hat{u}, 1, \omega) & =f(u) \phi(\omega) \\
& =H(u, \omega), \text { say }
\end{array}
$$\right\}
\]

On writing $p=\frac{\partial}{\partial u}$ and $q=\frac{\partial}{\partial \omega}$, the heat conducion equation (7), on using the boundary conditions (8) yields

$$
\begin{equation*}
T=\frac{\sin v \sqrt{p^{2}-q}}{\sin \sqrt{p^{2}-q}} H(u, \omega \mid) \tag{9}
\end{equation*}
$$

NUMERICAL EXAMPLES
In this section, we take some particular type of applied surface temperature to illustrate our problem. Two cases are discussed.

Case-I: Taking the applied surface temperature as

$$
\begin{equation*}
H(u, \omega)=\sum A_{n} e^{-\left(a_{n}|u|+b_{n}|\omega|\right)}, a_{n} b_{n}>0 \tag{10}
\end{equation*}
$$

Substituting (10) in (9) and after some caloulations, we get

$$
\begin{equation*}
T=\sum A_{n} \frac{\sin v \sqrt{\left(a_{n}^{2}-b_{n}\right)}}{\sin \sqrt{\left(\overline{\left.a_{n}^{2}-b_{n}\right)}\right.}} e^{-\left(a_{n}|u|+b_{n}|\omega|\right)} \tag{11}
\end{equation*}
$$

Now by giving suitable values to the constants α_{n}, b_{n}, and A_{n}, it is easy to find thenumerical values, when the applied temperature function is any sine, cosine, hyperbolio sine or hyperbolic cosine functions of x and t.

Case-II : Taking the applied surface temperature as

$$
\begin{equation*}
H(u, \omega)=\frac{e^{-b \mid \mu_{1}}}{(1+a \omega)}, \omega \geqslant 0, b>1 \tag{12}
\end{equation*}
$$

Putting this valve in (9), we get

$$
\begin{equation*}
T=e^{-b \mid x y} \frac{\sin \sqrt{\sqrt{b^{2}-q}}}{\sin \sqrt{b^{2}-q}} \phi(\omega) \tag{13}
\end{equation*}
$$

For numerical evaluation of the temperature distribution in the slab, we take $a=0 \cdot 1$ and $b=3 \pi$.
Now the expression for T given by (13) is expanded as infinite series in powers of q in the form

$$
\begin{equation*}
e^{\text {b, } \mid,}\left[\sum_{n=1}^{\infty} \gamma_{n} q^{-}\right]^{n}(n)-2 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\omega)=\frac{1}{\sin \sqrt{\delta^{2}-q}} \cdot \hat{\phi}(\hat{\omega}) \tag{15}
\end{equation*}
$$

The expression for T in the form of equation (14) is

$$
\begin{align*}
& T=e^{-b}\left[\sin b v-\frac{v \cos b v}{2 b} q=\frac{1}{2^{2}}\left(\frac{v^{2} \sin b v}{b^{2}}+\frac{v \cos b v}{b^{3}}\right) \frac{q^{2}}{2!}+\frac{1}{2^{8}}\left(\frac{v^{3} \cos b v}{b^{3}}-\right.\right. \\
& \left.-\frac{3 y^{2} \sin b v}{b^{4}}-\frac{3 v \cos b v}{b^{5}}\right) \frac{q^{3}}{3!}+\frac{1}{2^{4}}\left(\frac{v^{4} \sin b v}{b^{4}}+\frac{6 v^{3} \cos b v}{b^{5}}-\frac{15 v^{2} \sin b v}{b^{6}}-\right. \\
& \left.-\frac{15 v \cos b v}{b^{6}}\right) \frac{q^{4}}{4!}+\frac{1}{2^{5}}\left(\frac{-v^{5} \cos b v}{b^{5}}-\frac{10 v^{4} \cos b v}{b^{6}}+\frac{45 v^{3} \cos b v}{b^{2}}-\frac{105 v^{2} \sin b y}{b^{8}}-\right. \\
& \left.\left.-\frac{10 v \cos b y}{b^{2}}\right) \frac{q^{5}}{5!}+\ldots \ldots \ldots . .\right] F(\omega) \tag{16}
\end{align*}
$$

The coefficient γ_{n} in (14) are functions of v and the sequence $\left\{\gamma_{n}\right\}$ is seen to be rapidly convergent. The equation (15) oan be written as

$$
\begin{equation*}
\bar{\therefore} \bar{x} \bar{x}(\omega)=\left(\sum_{n=0}^{\infty} \alpha_{n} q^{n}\right), F(\omega) \tag{17}
\end{equation*}
$$

The sequenee $\left\{\alpha_{n}\right\}$ deoreases in magnitade rapidly. The first six α_{n} 's are calculated.

$$
\begin{aligned}
& \alpha_{0}=0.000000 \\
& \alpha_{1}=0.05305165 \\
& \alpha_{2}=0.00014931 \\
& \alpha_{3}=-0.00002404 \\
& \alpha_{4}=-10^{-6} \times 0.24 \\
& \alpha_{5}=10^{-8} \times 0.177
\end{aligned}
$$

Now expanding the function $\phi(\omega)$ about any arbitraxy point ξ by Taylor's series, we get

$$
\begin{equation*}
\phi(\omega)=\sum_{n=0}^{\infty} \phi_{n}(\xi)=\frac{(\omega-\xi)^{n}}{n!} \tag{18}
\end{equation*}
$$

where $\phi_{n}(\xi)$ is the nth derivative of $\phi(\omega)$ at $\omega=\xi$.
The terms in the equation (18)decteamerapifly in magnifude and thefirst fouptorms can be taken for approximation of $\phi(\omega)$. Thus, the function $\psi(\omega)$ defined sy (15) is of the form

$$
\begin{equation*}
F(\omega)=\sum_{n=0}^{5} \beta_{n}(\omega-\xi)^{n} \tag{19}
\end{equation*}
$$

where β_{n} are function of ξ.
The oseffisients $\beta_{n}(n=0,1,2$.

> 5) are detarmined from the fellowing relations

$$
\begin{aligned}
& \left.\phi_{1}(\xi)=\sum_{n=0}^{4}(n+1) \backslash \alpha_{n} \hat{\beta}_{n+1}\right\} \\
& \phi_{2}(\xi)=\sum_{n=0}^{3}(n+\overline{+})+\alpha_{n} \beta_{n+2} \\
& \phi_{3}(\xi)=\sum_{n=0}^{\infty}(n+3) \operatorname{lo}_{n}^{-\beta} \beta_{n+3}, \\
& \phi_{4}(\xi)=\sum_{n=0}^{n}(n+4)!\alpha_{n} \beta_{n+1}
\end{aligned}
$$

Clarly the coeffieient $\beta_{0}=0$, since $\phi(\omega)$ and all its derivatives bend to zero as $\omega \rightarrow \infty$.

Fig 1-Temperature distribution at various time in the slab at $v=1 / 3$.

Fig 2-Temperature distribution at various time in the slabat $y=\frac{1}{2}$.

Now the expression (14) for T for values of ω near ξ takes the form

$$
\begin{equation*}
T=e^{-b|q|}\left[\sum_{n=0}^{\infty} \gamma_{n} q^{n}\right]\left[\sum_{n=1}^{5} \beta_{n}(\omega-\xi)^{n}\right] \quad \rightarrow \tag{20}
\end{equation*}
$$

Setting $\omega=\xi$, the general expressions for T becomes

$$
\begin{equation*}
T=e^{-b}|x| \sum_{n=1}^{5} n \mid \gamma_{n} \beta_{n} \tag{21}
\end{equation*}
$$

It can be seen that the terms of this finite series decrease very rapidly.

DISCUSSION OFTHERESULTS OF EXAMPLES

In this section we discuss in detail the numerical examples considered in Case II of last section. For $v=1 / 3, \omega=1$, the first term in (17) is $30311043 \times e^{-b / 4}$ and the third term is $-0.00000018 \times e^{-b / 4}$. Values of temperature T, with x at $v=1 / 2$ and $1 / 3$ for various values of $h(h=0,1,5,10)$ are calculated and shown in Fig. 1 and 2 respectively.

From Figures following observations are made :
(i) The temperature zero when $u \rightarrow \infty, \omega \rightarrow \infty$.
(ii) The fall in temperature as u increase is very rapid whereas with the increase of time, the fall in temperature is slow.
(iii) At $v=\frac{1}{2}$, the temperature is negative but is quite small in magnitude.
(iv) It is interesting to note that the values of the temperature at $v=\frac{1}{3}$ is one-third the values at $v=1$.

RETERENCES

1. Martin, C. J., J. Math. Mech., 15 (1966).
2. Lur's, A. I., 'Three Dimensional Problems of the Theory of Elasticity' (Gosudarstvennoe Izdatel' stvo Technokoteoretioheskoi Literatury, Moscow), 1955.
3. CabsLaw, H. S. \& JaEger, J. C., 'Conduction of Heat in Solids', Oxford, 1959.

[^0]: 7 Member of the Institution of Engineers (India).

