# TIME REVERSAL PROBLEM OF HEAT CONDUCTION IN SOLIDS OF SPHERICAZ 

 SYMMETRYB. S. Mehta

Government College, Shahpura
(Received 10 November 1972 ; revised 9 August 1975)
In this paper the time reversal heat conduction problems for the spherical shells with heat generation and radiation with known boundary conditions have been solved by operational methods.

In 'Time Reversal Prohlems' wa determine initial temperature distribution when the temperature distribution at any instant $T(T>0)$ is known to us. Sabherwal has considered the time reversal problems in heat conduction for (i) semi-infinite medium, (ii) rectangular plate.' Under the head of time reversal problems Mehta ${ }^{2}$ has studied (i) heat flow in a cylindrical shell of infinite beight with heat generation and radiation, (ii) heat flow in a truncated wedge of finite height, (iii) heat flow in a semi-infinite solid containing an exterior plane crack with a circular boundary and an infinitely long eylindrical cavity.

In this paper we have considered the flow of heat in a spherical shell and in a solid sphera with heat generation and radiation. The temprature distribution at a given tima $T$ is known and the initial tampsrature distribution is determined.

FLOW OF HEATIN A SPHERTCALSHELL WITH HEAT GENERATION AND RADIATION

We consider here the flow of heat in a spherical shall $a \leqslant r \leqslant b$. Let the radiation take place at the surfaces $r=a$ and $r=b$, and temperature distribution $v_{0}(r)$ at time $t=T$. The beat source is within the shell. We assume that the temperature distribution depands upon the radial coordinate $r$ and time $t$ only. In this case the equation of conduction of heat is given ${ }^{3}$ by

$$
\begin{equation*}
\frac{\partial v}{\partial t}=k\left[\frac{\partial^{2} v}{\partial r^{2}}+\frac{2}{r} \frac{\partial v}{\partial r}\right]+Q(r, t)^{\prime} \tag{I}
\end{equation*}
$$

where $v=\hat{v}(r, t)$ is the temperature distribution at any instant $t, k$ is the diffusivity constant and heat is supplied at the rate of $Q(r, t)$ per unit time per unit volume.

The appropriate physical conditions are given as .

$$
\begin{align*}
& {\left[\frac{\partial v}{\partial r}-k_{1} v(r, t)\right]_{r=a}=f_{a}(t), t>0}  \tag{2}\\
& {\left[\frac{\partial v}{\partial r}+k_{1} v(r, t)\right]_{r=b}=f_{b}(t), t>0} \tag{3}
\end{align*}
$$

where $k_{1}$ is radiation constant whose value can be positive or zero.

$$
\begin{array}{ll}
\left.v(r, t)\right|_{t=0}=w(r), \quad(\text { unknown }) & a<r<b \\
\left.v(r, t)\right|_{t=T}=v_{0}(r), \quad(\text { known }) & a<r<b \tag{5}
\end{array}
$$

Using the substitution

$$
\begin{equation*}
v(r, t)=r^{-\frac{1}{2}} u(r, t) \tag{6}
\end{equation*}
$$

the equations (1) to (5) become

$$
\begin{equation*}
\frac{\partial u}{\partial t}=k\left[\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{1}{4 r^{2}} u(r, t)\right]+Q_{1}(r, t) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& Q_{1}(r, t)=r^{\frac{1}{2}} Q(r, t)  \tag{8}\\
& {\left[r-\frac{1}{2}\left[\frac{\partial u}{\partial r}-u\left(k_{1}+\frac{1}{2}\right)\right\}_{r=a}=f_{a}(t), t>0\right.}  \tag{9}\\
& {\left[r_{r}^{-\frac{1}{2}}\left\{\frac{\partial u}{\partial r}+u\left(k_{1}+\frac{1}{2 r}\right)\right\}_{r=b}=f_{6}(t), t>0\right.}  \tag{10}\\
& \left.u(r, t)\right|_{t=0}=r^{\frac{1}{2}} w(r)=w_{1}(r) \text { (unknown), } a<r<b  \tag{11}\\
& \left.u(r, t)\right|_{t=T}=r^{\frac{1}{2}} \quad v_{0}(r)=v_{1}(r) \quad(\text { known }), \quad a<r<b \tag{12}
\end{align*}
$$

Cinelli ${ }^{4}$ has defined finite Hankel transform as

$$
\begin{equation*}
f\left(\xi_{i}\right)=\int_{i}^{b} r f(r) C_{m}\left(r, \xi_{i}\right) d r, a \leqslant r \leqslant b \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
C_{m}\left(r, \xi_{i}\right)= & J_{m}\left(\xi_{i} r\right)\left[\xi_{i} Y_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} Y_{m}(\xi, a)\right] \\
& -Y_{m}\left(\xi_{i} r\right)\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} J_{m}\left(\xi_{i} a\right)\right] \tag{14}
\end{align*}
$$

$J_{m}\left(\xi_{i}^{\prime} r\right)$ and $Y_{m}\left(\xi_{i} r\right)$ are Bessel functions of the first kind and second kind respectively and of the order $m$ and $\xi_{i}$ is a root of the equation

$$
\begin{align*}
& {\left[\xi_{i} Y_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} Y_{m}\left(\xi_{i} a\right)\right]\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} J_{m}\left(\xi_{i} b\right)\right]=} \\
& \quad=\left[\xi_{i} Y_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} Y_{m}\left(\xi_{i} b\right)\right]\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} J_{m}\left(\xi_{i} a\right)\right] \tag{15}
\end{align*}
$$

Inversion theorem of (13) is

$$
\begin{equation*}
f(r)=\frac{\pi^{2}}{2} \sum_{\xi_{i}} \xi_{i}^{2}\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} J_{m}\left(\xi_{i} b\right)\right]^{2} f\left(\xi_{i}\right) \cdot \frac{C_{m}\left(r, \xi_{i}\right)}{F_{m}\left(\xi_{i}\right)} \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
F_{m}\left(\xi_{i}\right)= & {\left[h_{2}^{2}+\xi_{i}{ }^{\{ }\left\{1-\left(\frac{m}{\xi_{i} b}\right)^{2}\right\}\right]\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} \cdot J_{m}\left(\xi_{i} a\right)\right]^{2}-} \\
& -\left[h_{1}^{2}+\xi_{i}^{2}\left\{1-\left(\frac{m}{\xi_{i} a}\right)^{2}\right\}\right]\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} J_{m}\left(\xi_{i} b\right)\right]^{2} \tag{17}
\end{align*}
$$

and the summation is taken over the positive roots of the equation (15)
The operational property of (13) is

$$
\begin{align*}
& \int_{a}^{b} r\left[\frac{d^{2} f}{d r^{2}}+\frac{1}{r} \frac{d f}{d r}-\frac{m^{2}}{r^{2}} f\right] C_{m}\left(r, \xi_{i}\right) d r= \frac{2}{\pi}\left[\alpha\left\{f^{\prime}(b)+h_{2} f(b)\right\}-\right. \\
&\left.-\left\{f^{\prime}(a)+\hbar_{i} f(a)\right\}\right]-\xi_{2}^{2} \bar{f}\left(\xi_{i}\right) \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha \alpha=\frac{\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} a\right)+h_{1} J_{m}\left(\xi_{i} a\right)\right]}{\left[\xi_{i} J_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} J_{m}\left(\xi_{i} b\right)\right]} \tag{1.9}
\end{equation*}
$$

Applying (13) to (7) for the variable $r$ and using (9), (10) and (18) we obtain

$$
\begin{equation*}
\frac{d \bar{u}}{d t}+k \xi_{i}^{2} \bar{u}\left(\xi_{i}, t\right)=\frac{2 k}{\pi}\left[\alpha b^{\frac{1}{2}} f_{0}(t)-a^{\frac{1}{2}} f_{a}(t)\right]+\bar{Q}_{1}\left(\xi_{i}, t\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{Q}_{1}\left(\xi_{i}, t\right)=\int_{a}^{b} r^{3 / 2} Q(r, t){\theta_{t}}\left(r, \xi_{i}\right) d r \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{1}=-\left(k_{1}+\frac{1}{2 a}\right), h_{2}=\left(k_{1}-\frac{1}{2 b}\right) \text { and } m=\frac{1}{2} \tag{22}
\end{equation*}
$$

Solving (20) for $\bar{u}\left(\xi_{i}, t\right)$ and using (11), we get

$$
\begin{array}{r}
\bar{u}\left(\xi_{i}, t\right)=\bar{w}_{1}\left(\xi_{i}\right) e^{-k \xi_{i}^{2} t}+\frac{2 k}{\pi} \int_{0}^{t}\left[\alpha b^{\frac{1}{2}} f_{b}(y)-\right. \\
\left.-a^{\frac{1}{2}} f_{a}(y)+\frac{\pi}{2 k} \bar{Q}_{1}\left(\xi_{i}, y\right)\right] e^{-k \xi_{i}^{2}(t-y)} d y \tag{23}
\end{array}
$$

where

$$
\begin{equation*}
\bar{w}_{1}\left(\xi_{i}\right)=\int_{0}^{b} r^{3 / 2} w(r) C_{\frac{1}{2}}\left(r, \xi_{i}\right) d r \tag{24}
\end{equation*}
$$

From (12) and (23), the value of $\bar{w}_{1}\left(\xi_{i}\right)$ for $t=T$ is obtained as

$$
\begin{array}{r}
\vec{v}_{1}\left(\xi_{i}\right)=\bar{v}_{1}\left(\xi_{i}\right) e^{k \xi_{i}^{*} T}-\frac{2 k}{\pi} \int_{0}^{\pi}\left[\alpha b^{\frac{1}{2}} f_{b}(y)-\right. \\
\left.a^{\frac{1}{2}} f_{a}(y)+\frac{\pi}{2 k} Q_{N}(\xi, y)\right] e^{k \xi_{i}^{2} y} d y, \tag{25}
\end{array}
$$

where

$$
\begin{equation*}
\bar{\nabla}_{1}\left(\xi_{i}\right)=\int_{a}^{b} r^{3 / 2} v_{0}(r) C_{1}\left(r, \xi_{i}\right) d r \tag{26}
\end{equation*}
$$

Using (4) and (16) we get the initial temperature distribution $w(r)$ as

$$
\begin{align*}
w(r)= & r^{\frac{1}{2}} \frac{\pi^{2}}{2} \sum_{\xi_{i}} \xi_{i}^{2}\left[\frac{C_{\frac{1}{2}}\left(r, \xi_{i}\right)}{F_{\frac{1}{2}}\left(\xi_{i}\right)}\right]\left[\xi_{i} J_{\frac{1}{2}}^{\prime}\left(\xi_{i} b\right)+\right. \\
& \left.+h_{2} J_{\frac{1}{2}}\left(\xi_{i} b\right)\right]^{2}\left[\bar{v}_{1}\left(\xi_{i}\right) e^{k \xi_{i} T^{2}}-\frac{2 k}{\pi} \int_{0}^{T}\left\{\alpha b^{\frac{1}{2}} f_{b}(y)-\right.\right. \\
& \left.\left.-a^{\frac{1}{2}} f_{a}(y)+\frac{\pi}{2 k} \bar{Q}_{1}\left(\xi_{i}, y\right)\right\} e^{k \xi_{i}^{2} y} d y\right] \tag{27}
\end{align*}
$$

where $C_{\frac{1}{2}}\left(r, \xi_{i}\right)$ and $F_{\frac{1}{2}}\left(\xi_{i}\right)$ are given by (14) and (17) respectively with $m=\frac{1}{2}$.
The summation is taken over all the positive roots of the equation (15) with $m=\frac{1}{2}$.
FLOW OF HEAT IN A SOLID SPHERE WITH HEAT GENERATION AND RADIATION

The solid sphere is obtained by letting the inner radius of the spherical shell considered in the previous section approach zero. The temperature distribution $u(r, t)$ satisfies (7) and the physical conditions in this case are given by (10), (11) and (12).

In this case we use the transform given by Sneddon ${ }^{5}$ as

$$
\begin{equation*}
\bar{f}\left(\xi_{i}\right)=\int_{0}^{b} r f(r) J_{m}\left(r \xi_{i}\right) d r, 0 \leqslant r \leqslant b, m>-\frac{1}{2} \tag{28}
\end{equation*}
$$

where $f(r)$ is a continuous function and satisfies Dirichlet's conditions in $0 \leqslant r \leqslant b$ and $\xi_{i}$ is a root of the transcendental equation

$$
\begin{equation*}
\xi_{i} J_{m}^{\prime}\left(\xi_{i} b\right)+h_{2} J_{m}\left(\xi_{i} b\right)=0 \tag{29}
\end{equation*}
$$

Inversion theorem of (28) is

$$
\begin{equation*}
f(r)=\frac{2}{b^{2}} \sum_{\xi_{i}} \frac{\cdot \xi_{i}{ }^{2} \bar{f}\left(\xi_{i}\right) J_{m}\left(x \xi_{i}\right)}{\left[h_{2}{ }^{2}+\left(\xi_{i}{ }^{2}-m^{2} / b^{2}\right)\right]\left[J_{m}\left(b \xi_{i}\right)\right]^{2}}, \tag{30}
\end{equation*}
$$

and the summation is taken over the positive roots of the equation (29)

The Operational property of (28) is

$$
\begin{equation*}
\int_{0}^{b} r\left[\frac{d^{2} f}{d r^{2}}+\frac{1}{r} \frac{d f}{d r}-\frac{m^{2}}{r^{2}} f\right] J_{m}\left(r \xi_{i}\right) d r=b J_{m}\left(\xi_{i} b\right)\left[f^{\prime}(b)+h_{2} f(b)\right]-\xi_{i}^{2} \bar{f}\left(\xi_{i}\right) \tag{31}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\cdot h_{2}=k_{1}-\frac{1}{2 b}, \quad m=\frac{1}{2} \tag{32}
\end{equation*}
$$

and applying (28) to (7) for the variable $r$ and using (10) and (31), we obtain

$$
\begin{equation*}
\cdot \frac{d \bar{u}}{d} t+k \xi_{i}^{2} \bar{u}\left(\xi_{i}, t\right)=k b^{3 / 2} J_{\frac{1}{2}}\left(\xi_{i} b\right) f_{b}(t)+\bar{Q}_{1}\left(\xi_{i}, t\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{Q}_{1}\left(\xi_{i}, t\right)=\int_{0}^{b} r^{3 / 2} Q(r, t) J_{\frac{1}{2}}\left(r, \xi_{i}\right) d r \tag{34}
\end{equation*}
$$

Solving (33) for $\bar{u}\left(\xi_{i}, t\right)$ and using (11), we get

$$
\begin{equation*}
\bar{u}\left(\xi_{i}, t\right)=\bar{w}_{1}\left(\xi_{i}\right) e^{-k \xi^{i} t}+\int_{0}^{\ell}\left[k b^{3 / 2} J_{\frac{1}{2}}\left(\xi_{i} b\right) f_{b}(y)+\bar{Q}_{1}\left(\xi_{i}, y\right)\right] e^{-k \xi_{i}{ }^{2}(t-y)} d y \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{w}_{1}\left(\xi_{i}\right)=\int_{0}^{b} r^{3 / 2} w(r) J_{\frac{1}{2}}\left(r, \xi_{i}\right) d r \tag{36}
\end{equation*}
$$

From (35) and (12), the value of $w_{1}\left(\xi_{i}\right)$ for $t=T$ is obtained as

$$
\begin{equation*}
\bar{w}_{1}\left(\xi_{i}\right)=\bar{v}_{1}\left(\xi_{i}\right) e^{k \xi_{i}^{2} T}-\int_{0}^{T}\left[k b^{3 / 2} J_{\frac{1}{2}}\left(\xi_{i} b\right) f_{b}(y)+\bar{Q}_{1}\left(\xi_{i}, y\right)\right] e^{k \xi_{i}^{2} y} d y \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{v}_{1}\left(\xi_{i}\right)=\int_{0}^{b} r^{3 / 2} v_{0}(r) J_{\frac{1}{2}}\left(r, \xi_{i}\right) d y \tag{38}
\end{equation*}
$$

Using (4) and (30), we get the initial temperature distribution $w(r)$ as

$$
\begin{align*}
w(r)=r^{\frac{1}{2}} & \frac{2}{b^{2}} \sum_{\xi_{i}} \frac{\xi_{i}^{2} J_{\frac{1}{2}}\left(r \xi_{i}\right)}{\left[h_{2}^{2}+\left(\xi_{i}^{2}-\frac{1}{4 b^{2}}\right)\right]\left[J_{\frac{1}{2}}\left(b \xi_{i}\right)\right]^{2}} \times \\
& \times\left[\bar{v}_{1}\left(\xi_{i}\right) e^{k \xi_{i}^{2} P^{\prime}}-\int_{0}^{T}\left\{k b^{3 / 2} J_{1}\left(\xi_{i} b\right) f_{b}(y)+Q_{1}\left(\xi_{i}, y\right)\right\}^{k \xi_{i}^{2} y} d y\right] \tag{39}
\end{align*}
$$

where the summation is taken over all the positive roots of the equation (29) having $m=\frac{1}{2}$.

## PARTICULAR CASES

Here we mention some particular cases of special interest.
Case-I
Let the heat be generated at a constant rate $A_{0}$ per unit time per unit volume, the temperature distribution at time $t=T$ is taken unity and the radiation at the surface $r=b$ takes place into a medium of zero temperature.
Therefore, we have

$$
v_{0}(r)=1, f_{b}(t)=0
$$

and

$$
Q(r, t)=(k / K) A_{0}
$$

where $K$ is the thermal conductivity of the material of the sphere.
Hence the initial temperature distribution in this case is obtained from the general result (39) as

$$
\begin{aligned}
w(r)= & \frac{2 r^{\frac{1}{2}}}{b^{\frac{1}{2}}} \sum_{\xi_{i}} \frac{\xi_{i} J_{\frac{1}{2}}\left(r \xi_{i}\right)}{\left[h_{2}^{2}+\xi_{i}^{2}-\frac{1}{4 b^{2}}\right]\left[J_{\frac{1}{2}}\left(b \xi_{i}\right)\right]^{2}} \times \\
& \times J_{3 / 2}\left(\xi_{i} b\right) e^{k \xi_{i}^{2} T}\left[1-\frac{A_{0}}{K \xi_{1}^{2}}\left(1-e^{-k \xi_{i}^{2} T}\right)\right]
\end{aligned}
$$

Case-II
Assuming

$$
v_{p}(r)=1, f_{b}(t)=0
$$

and

$$
Q(r, t)=\frac{A_{0} k}{K},^{\mu}, \mu=0
$$

$A_{0}$ being constant, and using the result ${ }^{6}$

$$
\begin{aligned}
\int_{0}^{a} y^{n} J_{m}(y) d y= & \frac{a^{n+1+m}}{2^{m}(n+1+m) \Gamma(m+1)} \\
& \cdot{ }_{1} F_{2}\left[\frac{n+1+m}{2} ; \frac{n+3+m}{2}, m+1 ;-\frac{a^{2}}{4}\right], \quad \operatorname{Re}(m+n)>-1
\end{aligned}
$$

in (39), we obtain $w(r)$ as

$$
\begin{aligned}
& w(r)=2(r / b)^{\frac{1}{2}} \sum_{\xi_{i}} \frac{\xi_{i} J_{1}\left(\xi_{i} r\right) \exp \left(k_{\xi_{i}^{2}} T\right)}{\left[h_{2}^{2}+\xi_{i}^{2}-\frac{1}{4 b^{2}}\right]\left[J_{\frac{1}{2}}\left(\xi_{i} b\right)\right]^{2}} \times \\
& \times\left[J_{3 / 2}\left(\xi_{i} b\right)-(2 / \pi)^{1 / 2} \frac{A_{0} b^{(3 / 2+\mu)}}{K \xi_{i}^{1}(3+\mu)}{ }^{2} H_{2}\left\{\frac{3+\mu}{2}, \frac{5+\mu}{2}, \frac{3}{2}, \quad\right]\right. \\
& \left.\left.\rightarrow-\frac{b^{2} \xi_{i}^{2}}{4}\right\}\left(1-e^{-k \xi_{i}^{9} T}\right)\right], \mu<0
\end{aligned}
$$

REFERENCES

1. SAmininwat, K, C, Indian J, Pure \& Appl. Phyt- (1965), 449-450.
2. Menis, D. K, Proe. Nat, Acad. Sci. India, 3 (1969), 39 A.
3. Oarsla w, H.S. \& Jaboek, J. C, 'Conduetion of Heat in Solids', (Oxford University Press), (1959), p. 230.
4. Cnsmat, G., Int. J. Enging. Sc., 8 (1005), $639-559$.
5. Enapdon, 1. N., Fourier Transforms', (Me Graw-Hill, New York), (1951), p. 83.
6. Luki, Y. L., 'Integrals of Bessel Funetions', (Mc Graw-Hil, New York), (1962), p. 44.
