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The Ravlel,gh instability of an mcompresmble, ﬁmtelv condueting, inviscid fluid of variable d.ensxty is investigated
under the influence of an horizontal magnetic field. Due to finite conducting of the fluid, it is found that poten.
“tially stauble or unstable configuration retains its character. It may further Ve noted that'the stratification can be
stabilized for a certain wave-number range in the absenee of finite resistivity. The effect of finite resistivity is this
to wipe out the aforesaid range of wave- number for Whmh the system is stabilized otherwise.

The problem of sta,blhty of matter is of great 1mp0rtance in the peaceful uses of nuclear enerby, specially
in the controlled thermonuclear reactions. If the reaction is uncontsolled, it unleashes tremendous amount
of energy instantaneously and this is the underlying principle behind the atows bomb. But if the réaction
is to he controlled, one must take into account the possibility of the confinement. The basic question is
whetber the 1nstab1hty due to resistivity is tolerable or untolerable. -In the present paper we have tried to
find out to what extent the 1nstab111ty of the conﬁguratlon is affected by changing the resistivity of the
system. .

‘Lord Rayleigh® was one of the ﬁrst to 1n1t1ate the study of the hydrodynamlc stability of a strati-
fied inviseid fluid of variable density, he found that the equilibrium of a honzontal layer of a heavy in- -
dpy
Tdz
or anywbere positive. Chandrasekhar? introduced the viscosity into such problem and Hide® further
studied the case of a viscous conducting fluid with a transverse magnetic field. It was found that
magnetic field considerably stabilizes the configuration and it is possible to have oscillatory motion in the
presence of magnetic field even if the configuration is ‘throughly unstable.

Hide? also considered the effect of rotation on the character of the equilibrium of a stratlﬁed hetro-
genous inviscid fluid; and found that rotatmn stabilizes the potentially unstahle arrangement of certain
wave number. .

compressuble fluid of a variable density p, is stable or unstable according as — - is everywhere negative

\ ~

-The problem of the hydromagnetic stability of conducting fluid of variable density plays important
role in the study of astropbysics (theories and sunspot magnetic fields, beating of solar corona, stability
of the steller atmosphere in magnetic field). Since in the astrophysical problems, the coriolis forces play an
important role, therefore, it is necessary to study the combined effect of rotation and magnetic field.
Talwar® discussed for the first time the effect of a maguetic field (Horizontal) on the equilibrium of an
inviscid, incompressible, infinitely conducting rotating fluid of variable density. Ariel® further studied the
character of equilibrium of a heavy, viscous, 1ncompres‘srble, infinitely conducting, rotating fluid in the
presence of a magnetic field (vertical). In both cases, it is found that both magnetic field and the conohs
forces tend to stabilize the configuration.

Tn & more realistic physical situation specially relevant to the problem of confinement of matter one
must take into account the finite resistivity of the medium. The present paper is an attempt in that
direction. We, thus investigate the effect of a horizontal magnetic field on the equilibrium an inviscid,
1ncompress1ble, finitely conducting rotating fluid of variable density.

BASIC EQUATIONS
The linearised perturba.tlon equat:lons for the problem under consideration are

(v xMxH+2mWX9+ﬁm (1)
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where pg, P, and_. H denote 1espectively the density,” pressure and magnetic field at a pomt The
latter boing taken umform and along the horizontal direction. The fluid is assuwed to partake in uni-

form rotation £ about z-axis. ¢ is acceleration due to gravity (components 0, 0 ,=g), « and 7 denote the

coefficient of ma,gnetlc permeability and electiical resistivity at the medium. Finally 8 p, 8 p and & denote
the perturbations in density, pressure and magnetic field fespectively consequent to a small disturbance
which produces a velocity . field (u= u, v, W)

Analysing the disturbance into normal modes we seek solutmns Whose dependence onz,yand ¢ is
given by exp (tk, = + tky y + nt), where k; and k, are the borizontal components of the wave vector &

and n is the rate at which the system departs from ethbrmm, we find that the z- components of curl and
curl curl of equation (1), and equatmn (3) and its: curl take the form.

n[kﬂpow——D\poDw],—7’?—<Dpo,w+ ik (D =)k —2 2D (p ) =0, (5)

N « o omel — =t iké=202Dw, (6)
BRI LR T NG
[n-—ﬁ(D?-—-k%]f:iktHoz, ,_ < (@)
Wwhere V - o
g =ik v — ik, R ' (9)
and : : ; ' P ’
f“"@kx hy_-?/k:l/ 7%: E ~ / ‘ . (lb)

are the 2- components of curl u and curl b respectively.

o

BOUNDARY CONDITIONS

We assume that the fluid in oonﬁned between two rigid planes z2=0and z = d, 'siynce‘the normal

velocity at a boundary surface vanishes hence, we have v ‘
o , I L S i)
at a rigid boundary.

For electromagnetic boundary conditions, we see that if the fluid in bounded by an ideal conductor,

no. disturbance within the fluid can charge E and H outside the fluid. Since surface - charges and surfaee B

: currents can allow discontinuities in Ez, b and. hy, we'must require that

o h—Ew—Ey'"O ) R : S (12)
which. leads to - T
Df = 0and h,= 0 S ) o . (18)

at a surface bounda,ry by an ideal conductor.

We do not require a boundary condltwn on ¢ for the value of Z can be obta.med by substltutmg the '"‘

value of ¢ in equation (8).
A VARIATIONAL PRINCIPLE
Multiplying the equation (5) for the characteristic value n; by wj and mtegratmg across the vertical
extent of the fluid, we obtain the followmg equa.tlon after a series of integrations by parts.

0
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the integrated parts vamsh on account of boudary conditions,
Setting ¢ = j in equation (14), we get

oy = L= T I =L — R L, — B L+ 2 L L+ L+ L) =0. (15)
where : S ' ' | o
I1=f Po [k2w2+(Dw)2]dz, (16) ' 1, f——‘-‘fwszodZ, (17) -
h . Lo ; s 0 ‘
: "kz d . ' .
I, = | ';” f B2 dz, (18) ) I, —= —fﬂ—f ('I)h)2 qz, = (19)
. ' 0
- . : . ) - ™ d |
I, = @) | L= [t cn
) . . " B i V ) 0 : 0
) . Vd N ' N . \‘ o (I .
I, = 4” fgzdz @ ) - : = Iy = - "kg f(Df)zdz. (23)

0 B} o ¢

Now by considering a small change 8 n in » consequent upon ﬁrst order arbitrary vamatlon d w, 8k,
8¢ and 8 £in w, h, { and ¢ respectively which satisfy the boundary conditions of: the problem, we can show,
by proceeding along standard lines, that a necessary and sufficient condition for 3 n to vanish is that
w, h, ete. be solutions of the characteristic value problem. This provides tne basis for obtammg an approe
ximate solution of the problem by the variational ptocedure ‘

THE CASE OF EXPONENTIALLY] VARYING DENSBITY

A case for which a simple a.na,lytwa.l solution can be found is one in which the undlsturbed density dis~
tribution is given by i ,
- , po (2) = pyexp Bz, 24

where p; and B are constants. :
A further a,ssumption, namely "

’

pal<<i (25)
is made, implying that the density variation within fluid is much less than the average density and there-
fore, bas a negligible effect on the inertia of the fluid.

We shall now consider the case of thé fluid Qonﬁned between two rigid boundaries 2 = 0 and z=4d |
which are both ideally conducting. :

Since ; T
w(0) = w(d).= 0 l
h (0) =h(d) =20 (26)
D¢ (0) =Déd) = ,
We assume the following trial functlon for w (2), % (2), and £ (2) respectively ~ :
w (2) = W sin lz @n

h(2) = Ksinlz , - . (28)
: ¢
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§(2) = X cos lz : (29)
where [ = ws/d; s bemg any integer.
The value of £ (2 ) now can be obtained by inserting the value of ¢ () in euqatmn (8), we bave

v ; [ () =Zcosl, (30)
where ‘ ) o . : - o
" [ Wb (B kz)] X—ikHZ (31)
Substltutmg w(2), k(2), L (z) a,nd £(z)in ( ) 6) and (7) respectlvely, we obtam the following. equations.
e mZ— 0 ik, X—-2.QlW (32)
) "Pl ) : o
and 7 - :
1 . '[n+n(lz+k2)]K—nzK_zk HOW _ ' (33)
Solving the equations (31) (32) and (33), we get - | . : k
K = ik, Hy Winy, X = 2 Q Hy ik, W/(nny + V? , 2) =28 l ng Winmy + Ve k) (34)
* wheréjV, denotes the so called Alfven velocity given by ‘ : e
Vo2 = H?/4m p;. : : (36)

Substituting the values of trial functions (27) to (29) in the variational formula (15), we obtain the
following dispersion relations bétween n and k, after ehmmatmg K¥ W2 X2/ W2, Z%/W? and on making-use
of equahons listed in.(34) ' :

W5+ 2nt oy (2 + 2)-I—nf[nz(lz+k2)2—|—2V02k200328+_ 49?;};‘1237“2 ] i

+2n2 ) [4 @p—_gp B+ V2 B cos? 0 (12 + k’z)] + n"[«ﬁ @ +

9BR T
R ‘ k”) (4 PPr—gp k) + Vot & 0034 0 — Vo2 k2 cos? 6 T ] — - |
—-2an MV@eos?0=0, - BT o (36)

0 bemg:’chpf,;nchna,tlon of the direction of wave-vector to tha,t of the ma.gnetlc field. - 1‘
o8 1s*reduced to the corresponding dispersion relation obtained by Talwart when 5 = 0.

“MIE'ES donvenient to discuss ¢quation (36) in non-dimensional form, we choose dimensionless’ growth
rate y and a dimensionless, wave-number » by measuring » and & in sultable units, by defining '

® = kdjws, and y = ndfn sVy. ) o (37)
From! ‘equations (36) and (37), we . have

Pt AP R+ 9 4B (1 e 20 ot 0 4 ST

14 22
+ 22 (1 4 o?) 00829] +y [4_R2 (1 + 22 (A—B\wg) + 2t cos? § —

] +4y2R[(A—‘Bx2) +
- Bw*cos20]_

i
~— 2BRatcos?0=0, . | R S (39)
where . A=42amaeye, o (39)
T B gy, “) .
and
R-.WWS/ZVO . o (41)

From above equation, we see that there are three pa,rameters required to specify y for any given z.
These parameters A, B and B represent measures of coriolis forces, buoyancy forces, and electrical re-
sistivity in terms of magnetic field, respectively.

Equation (88) is a quantic in y, hence it will bave five roots. It is too difficult to solve it exphclty for
arbitrary value of 4, B, E and z. However, we can draw a few general conclusions. It can be seen that
if the absolute term in equation (38) is posmve that is B < 0, by Hurwitz criterion equation (38) does not
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admit any positive root and the equilibrium is always s able. Thus the potentially stable arrangement
remains intact. ,
) If B> 0, the absolute term in equatmn (38) 1s nega,tlve therefore, the equation (38) being of an odd
degree must have necessarily at least one real positive root. 1In fact, it is the only positive root and cor-
responding to this root equilibrium is always unstable. It may be further noted that the stratification
can be stabilized for a certain wave-number range (z > 4/ B—1) in the absence of finite resistivity. The
effect of finite resistivity is thus to wipe out the aforesaid range of wave-number for which the system is
stabilized otherwise.
We shall now discuss the nature of this positive root y in detail. The asymptotic behaviour of this
root for x - 0 and » - co are
‘ y > Batcos?0/24AR , (z > 0), ‘ (42)
and y - [(cost 6 + 16 BR2)} — cos® 8]/4R. (x> © ) - (43)
We shall now consider the behaviour of y on varying the value of R, the measure ofelectrical resisti-
vity. A peculiar tendency is exhibited by y as we vary R Two cases arise (@) B > R* (b) R < R*

where . ' , 1 ‘/: -
: R¥ = ¢/~ — .
: 2 A+ B cos ¢ , (44)

Whereas in the former case no mode of maximum instability occurs—y monotonically increases from
(cost 8.+ 16 BR%)} — cos? 6 '
4R

mode of maximum 1nsta,b111ty Thus the electrlcal resistivity suppresses the mode of maximum instability
for & reasonably large value of -R.

_ . It can be further noted from Fig. 1 that an increase in the value of R leads to a decrease in the value
of 4 J for small values of z, but to an increase in the values of y for large values of z. Thus, we can conclude
that electrical resistivity has a stabilizing influence for small wave-number (or large wave-lengths) of dis-
turbance but it has a destabilizing effect for large wave-numbers (or small wave-lengths).

The calculation of the positive root of the equation (38) has also been carried out for B= 5, R = 1 and
for several values of 4, and the results are presented graphically in Fig. 2. Curves of y against z for B=15
R=1 and 4=0, 10, 100 are plotted. These curves clearly show that no mode of maximum lnsta.blhty
exists. (Since in this case B > R* for all valuesof 4 and B). Further the curves of y agamnst z for B = 0-2,
B =15 and various values of A are plotted in Fig. 3. It can be seen (i) that for a given w, y decreases with
increase of A4 (i¢) that the maximum growth rate, also decrease with increase of 4 (44) that, the wave-
number for the mode of maximum instability increases with increasing 4, the parameter 4 being a mea-
sure of the relative dynamical 1mporta,nce of the comohs forces with the magnetic forces. We can say for

zero and approaches asymptotically ; in the latter case there is aflways a

A
1
A
\ ( .
— —+ . 00 = 20 4.0 60 .80 100
) 1.0 2.0 3.0 T x
Fig. 1—T t R pig. 2—The growth rate y plotted as a function of wave-
€ ngfn%l;“; ]f?o:atz !i_gh::s.i aj ifim'.i“:ll;;nv;{lggvgf g number  for B =5, and R = 1. The values of 4
N R=1c,0-50-23and 0 (0 = 0), are”0, 10 and 100 (.9-. 0), 73
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this case that, for a given B, the effect of increase in
rotation is to increase the time taken for the system
of depart from equilibrium and to decrease the wave-
length of the mode of maximum instability.

. WAVES IN THE ABSENCE OF
/BUOYANCY FORCESB
Putting B= 0 in equation (38), we get for § = 0

e B0 mequation @8) Theetlor 1=0
[-?/2+29R(1+?”’+”‘2] = T1ra

‘\'[y\+42R(1—l-a?)]2. ,\ @)

If 4 = 0, the equation (45) becomes

o-e ’ o 20 30 From equation (46) it can be seen that for B >4

oy

(in general B > } cos 8) the motion is aperiodical for
entire range of z, however, if- B <C  the damped osgil-
lations take place within the wave-ranger, <z <,

Fig. -3—The growth rate y plotted as a function.of wave-
numker x for B = 5 and B = 0-2. - The values
. of Aare 0,1 and 5 (6 = 0). :

~ . S ; (47)

Whereiy o o 2, = 2le [2R2~—‘1 + (1 — 4R2)%] o (48)
Simplifying equation (45) further, we get S » B v k

4 +2y ,[R (1 4 o?) + 3¢ ( ; —fm“‘ )‘} ]+ a? + 20 R (14 o di =0, (49)

The solqtioﬁ of eqii‘é,tion (49) can be easily written ; S ) _
S m1gi(—A VW]ilmaamwr 4 T At ]*'
[Ra+om2ii (2 ) [ Pa+ o0 —rim — 2 F 40 +R[. @

~ Since in equation (50) the coefficient of y is complex with non-zero real part, it should have necessarily
complex roots. Hence we find that rotation in the absence of buoyancy forces gives rise to damped oscil-
latory motion throughout the range of wave-number z, in contrast to the case when the coriolis forces are
absent. Because in the latter case there is always a range of values of x for which the motion is aperiodi-

cally damped. :
I (y), the angular frequency of oscillations, is given by -+ = ' _
‘ 3

I = :{:%(—l—f—ﬁ)é + é— {[(Rz(l NEp . T(‘liﬁ)‘ ._wz‘)gx;A(l —Mpz)R] _

'—(Rz(l+w2)+ —;1_(1%?)‘—‘_902)}%' L 61

_ The positive and negative signs taken in possible combinations give the angular frequency of four
normal modes of oscillations. The expressions for the phase and group velocities can be obtained from
equation (B1), with the help of the following relations. :

Vo= £ 1(y), Upw = d I (3)fda. - (52)
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