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The Rayleigh instability of an incompressible, finitely conducting, inviscid fluid of variable density is investigated 
under the influence of an horizontal magnetic field. Due to finite conducting of the fluid, it is found that poten. 

-tially stable or unstable configuration retains it8 character. It may further Fe noted that the stratification can be 
stabilized for a aertain wave-number range in the absence of finite resistivity. The effect of finite resistivity is this 
to wipe out the aforesaid range of wave-number for which the system is stabilized otherwise. 

The problem of stability of matter is of great importance in the peaceful uses of nuclear enerby, specially 
in tbe controlled thermonuclear reactions. If the reaction is uncontlolled, it unleashes tremendous amount 
of energy instantaneously and this is the underlying principle behind the aton; bomb. But, if the reaction 
is to be controlled, one must take into account the possibilitp of hb.9 confinement. The basic question is 
whether the instability due to resistivity is tolerable or untderable. dn the present payer we have tried to 
find out to what extent the instability of the configuration is affected by changing the resistivity of the 
system. I - - - 

 LO;^ Rayleighl was one of the first to initiate the study of the hydrodynamic stability of a strsti- 
fied inviscid fluid of variable density, he Found that the equilibrium of a horizontal layer of a heavy in- 

compressible 5uid of a variable density p, is stable or unstable according as - dpo is everywhere negative 
dz 

or anywbere positive. Chandrasekhar2 introduced the viscosity into such problem and Hide3 further 
, studied the case of a viscous conducting fluid with a transverse magnetic field. It was found that 

magnetic field considerably stabilizes the configuration and it is possible to have oscillatory motion in the 
presence of magnetic field even if thp configuration is througbly unstable. 

Hide4 also considered the effect of rotation on the character of the equilibl*ium of a stratified hetro- 
genou8 inviscid fluid; and found that rotation stabilizes the potentially unstable arrangement of certain 
wave number. 

\ \ 

The problem of tbe hydromagnetic stability of conducting fluid of variable density plays imgortant 
role in tne study of astropbysics (theories and sunspot magnetic fields, heating of solar corona, stability 
of the steller at,mosphere in magnetic field). Since in the astrophysical problems, the coriolis forces play an 
important role, therefore, i t  is necessary to study tbe combined effect of rotation and magnetic field. 
Talwar5 discussed for the first time the effect of a magnetic field (Horizontal) on the equilibrium of an 
inviscid, incompressible, infinitely conductingrotating fluid of variable density. Arie16 furtber studied the 
character of, equilibrium of a heavy, viscous,, incompr_essible, infinitely wnducting, lotating fluid in the 
presence of a magnetic geld (vertical). In both cases: i t  is found that hoth magnetic field and the coriolis 
forces tend to stabilize the configuration. 

In a more realistic physical situation specially relevant to the problem of confinement of matter one 
must take into account the finite resistivity of the medium. The present paper is an attempt in tbat 
direction. We, thus investigate the effect of a horizontal magnetic field on the equilibrium an inviscid, 
incompressible, finitely conducting rotating fluid of variable density. 

BASIC E Q U A T I O N S  

The lincarised perturbation equations for the problem under consideration are 

K 

at 
(1) 



where p,, p,, a11d-Ho denote ~espectively the density,' pressure and magnetic/field at  a point. Tbe 
latter buing taken uniform and along the horizontaldirection. The fluid is assumed to partake in uni- 
form rotation D about a-axis. g is acceleiation due to gravity (components 0, t),=&), K and q  denote the 
coefficient of magnetic permea.bjlity and eleotiical resistivity at  tbe msdium. Finally 6 p, 6 p  and h denote 
the perturbations in density, pressure and magnetic field fe,spectively consequent to a small disturbance 
wbicb prbduces a velocity field (a= - U; v, w ) .  . * - -  

Analysing the disturbt&ce ink0 normal modes, we seek solutions whose dependence on z, y and t is 
given by exp (i& x + iky y + st), where L and ky are the borizontd components of the wave vector Ic 
and n  is the r a t e a t  which the sj-stem departs from equilibyium, we find that the z-components of curl and 
our1 curl of equatiafi (I), and equation (3) and its-curl take the form. 

K HO -- i k g f = 2 p , Q D w ,  47r 

n - q  ( D 2 -  k2) hi = ikmX Ho MI, I 
where 

(:= ik, v - ik[w , 
and 

.$ = ikx hi- iky , 
are the z-components of curl 9 and curl _h respectively. 

B O U N D A R Y  C O N D I T I O N S  . 

We assume that the fluid in confined between two rigid planes z = 0 and z = d, since the normal 
velocity a t  a boundary/surface vanisb es hence, we have 

w = O  (11) 
at  a rigid boundary. 

For electromagnetic boundary conditions, we see that if the fluid in bounded by an ideal conductor, 
no disturbance within the fluid can charge E and H outside th'e fluid. Since surface charges and surface 
currents can allow aiscontinuities in h',, hz and hg, we must require tbat 

hz = E2: = Ey = 0 (12) . 
which. leads to 

D t = O a n d h , = O  (13) 

at  a surface boundary by an ideal conductor. 

We do not require a boundary condition on 5 for the value of 5 can be obtained by substituting the 
value of .$ in equation (8). 

A V A R I A T I O N A L  P R I N C I P L E  . . 

Multiplying the equation (5) for the characteristic value ni by Wj and integrating aaross -the vertical 
extent of the fluid, we obtain the following equation, after a series of integrations by parts. 
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the 

where 

d 
K - - (IN I- 1 k2) 1 Zi 6 - x- 3- D  ti DZj dz (kl) 
4a 

0 0 

integrated parts vanish on account of boudary conditions. 
Setting i = j in equabion (14), wc got 
% ( I ,  - I 3 - . I ,  f I6 - 1 , ) - ( g k 2 / @ )  1 2 - - q k 2 ( 1 3  + 2 I ,  + f - , + I ,  +Z,)=O (15) 

d 

Zl = / po [ k2 w2 + (Dw l 2  ] dz, (1 6) - I, = w s D p , d z ,  (17) 

0 0 S 
I - K Y  1 h2 dz, (18) 

S -  4?r 
0 

(2 

I ,  = - S ; d Z ,  (22) I* = - 
4n 

" ( D  5).  dz. (23) 477 k2 
0 0 

Now by considering a small change S n in n consequent upon first order arbitrary variation 6 w, ah, 
6 5 and 6 6  in w,  h, 5 and Z respectively which satisfy the boundary conditions of the problem, we can sb~w,  
by proceeding along standard lines, that a necewary and sufficient condition for 6 _n to vanish is tbat 
w, h, etc. be solutions of the characteristic value problem. ' This provides the basis for obtaining an a p p  
ximate solution of tbe problem by the variational procedure. 

T H E  C A S E  O F  E X P O N E N T I A L L Y l  V A R Y I N G  D E N S I T Y  

A case for which a simple analyticai solution can be found is one in which the undisturbed density dis- 
tribution is given by 

Po ( 2 )  = P l  exP B 2,  
where pl and ,!? are constants. 

(24) 

A 'further assampt,ion, namely 
, 

IBaI < < I  (26) 
is made, imklying that the density variation within fluid is mucb lcss than tbe average density and there- 
fore, bas a negligible effect on the inertia of the fluid. 

We shall now consider the case of tbd fluid oonfined between two rigid boundaries z = 0 and a = d 
which are both ideally conducting. 
Sinoe ; 

w (0)  = u, ( d )  = 0  
h ( 0 )  = h: (a) = 0 1 

o r (0 )  = D l @ )  = 0 J 
(26) 

We assume the following trial function for w (z ) ,  F, ( z ) ,  and tz) respectively 
w ( 2 )  = W sin lz 
h (z)  =: K sin lz 

(27) 
(28) 
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.$ (2) = X COS 1% (29) 
where 1 = rrs/d, s being any integer. 
The value of 5 (a) now can be obtained by inserting the value of 4 (z) in euqation (8), we have 

5 (2) = Z cos 12, 

where 
(30) - 

[ p + r] (12 + k2) ] X = dk, Ho Z (31) 

Substituting to  (z), h (z), 5 (2) and 4 (2) in (6) and (7) respectively, we obtain the following equations. 

and 

Solving the equations (312, (32) and (33), we get 

K = ik, Ho W/n2, X = 2 S2 Ho ik, W/(nm2 + V,2 k2) , Z = 2 I R, W/mn, + V t  lcZ2) (34) 
wher8)Vo denotes the so called Alfven velocity given by 

V,2 = H02/41~ pl. (35) 
Stlbstituting the values of trial functions (27) to (29) in the variational formula (15), we obtain the 

following disper-on relations &tween n and 7c, after eliminating K2/ W2, X2/ W2, Z2/ W2 and on makinpuse 
of dquations listed in (34) 

, . 

n6 + 2 n4 r ]  (12 + 2, + nv,3 l2 + k2)2 + 2 V z  k2 cos2 6 + a n 2 ~ - ~ p i 2  

12 + lC2 I + 

r + ifis) (4 s2 i2 - g p k2) $: v04 k4 0034 e - vO2 k2 cos2 e 9 8 k 2  1- - 
{G' - " 1- < i :  

I ..i- 

l2 + lcz 
- 2 g p q  lc4 v02c0s2e= o ,  

,.., a "' 711 1;1' 

(36) 

6 beillg ftbg(he.jnolination of the direction of wave-vector to that of tbe magnetic field. - : 
1, Et; is'rdilced to the corresponding dispersion relation obtained by Talwar4 when q = 0. 

- 'It'% 'sonvenient to discuss equation (36) in non-dimen;ional form, we choose dimensionlesi growth 
rate y and a dimensionless, wave-number a by measuring n and k in suitable units, by defining 

x = rEd/rs, and y = nd/rrsVo. (37) 
FrGrh" eqdations (36) and (37), we have 

1 p i t 4 f l ~ ( l + x ~ ) + $ [ 4 ~ ' ( 1  + z 2 ) 2 + 2 x 2 c h 4 " 8 + - ~ ~ ~ ~  ] + 4 g 2 ~ [ ( ~ - B ~ 2 ) +  

where A = 4 Q2 d2/w2 s2 V z  , 
r -  - (39) 

B = g pa2]& s9 VO2, (40) 
and 

R = rr q s/2 Vo d (41) " 

From above equation, we see that, tbere are three parameters required to specify y for any given x. 
These parameters A, B and R represent measures of coriolis forces, buoyancy forces, and electrical re- 
sistivity in terms of magnetic field, respectively. 

Equation (38) is a quantic in y, bence it will have five roots. It is too diliicult to solve it explicity for 
arbitf$ry value of A, B, R and x. However, we can draw a few general qonclusions. It can be seen that ' 
if the absolute term in equation (38) is positive that is B < 0, by Hurwitz criterion equation (38) does not 
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admit any positive root and the equilibrium is always s able. Thus the potentially stable arrangemenh 
remains intact. 

If B > 0, the absolute term in equation (38) is negative therefore, the equation (38) being of an odd 
degree niuat have necessarily at  least one real positive root. In fact, it is the only positive root and cor- 
responding to this root equilibrium is always unstable. It may be further noted that the stratification 
can be stabilized for a certain wave-number range (x > 2/ B- 1 )  in the absence of finite resistivity. The 
effect of finite resistivity is thus to wipe out the aforesaid range of wave-number for which thc system is 
stabilized otherwise. 

We shall now discuss the nature of this positive root y in detail. The asymptotic behaviour of this 
root for x + 0 and x + c~ are 

y + Bx4 cos2 0/2AR, ( x +  O), (42) 
and y -t [(cos4 0 + 16 BR2)& - cos2 01/4R. (x -t cg ) (43) 

We shall now consider the behaviour of y on varying the value of R, the measure otelectrical resisti- 
vity. A peculiar tendency is exhibited by y as we vary R. Two cases arise (a) R > R* (b.) R < R* 
where 

2 A + B  
00s 6' (44) 

Whereas in the former case no mode of maximum instability occurs-y monotonically increases from 

zero and approaches ( c0s4 ' + l6 R2)t c0s2 ' asymptotically; in the latter case there is always a 
4R 

mode of maximum instability. Thus the electrical resistivity suppresses the mode of maximum instability 
for ti reasonably large value of R. 

It can be further noted from Fig. 1 that an increase in the value of R leads to a decrease in the value 
of y for small values of x, but to an increase in the values of y for large values of x. Thus, we can conclude 
that electrical resistivity has a stabilizing influence for small wave-number (or large wave-lengths) of dis- 
turbance but it has a destabilizing effect for large wave-numbers (or small wave-lengths). 

The calculation of the positive root of the equation (38) has also been carried out for B = 5, R = 1 and 
for several values of A, and the results are presented graphically in Pig. 2. Curves of y against x for B-= 5, 
R = 1 and A = 0, 10, 100 are plotted. These curves clearly show that no mode of maximum instability 
exists. (Since in this caseR > R* for all values of A and B). Further the curves of y against x for R P 0.2, '- 

B = 5 and various values of A are plotted in Fig. 3. It can be seen (i) that for a given x, y decreases with 
increase of A (ii) that the maximum growth rate, also decrease with increase of A (iii) that, the wave- 
number for the mode of mlximum instability increases with increasing A, the parameter A being a mea- 
sure of the relative dynamical importance of the coriolis forces with the magnetic forces. We can say for 

X 
Fig. I-The growth rate y plotted as a function of wave- 2-The growth rate y plotted as a function of wave- 

number z for R = 5 and A = 1. The vddea of z for B = 5, and R = 1. The values of A 
% R = a , 0 . 6 , 0 . 2 i t ~ d O ( O  SO). are- 0,10 and 100 18 = o), 
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tbis case that, for a given 3, the effect of increase in 
- rotatioj? is to increase tbe time taken for the system -- --- of depart from equilibrium and to decrease the wave- 

length of the mode of maximum instability. 

W A V E S  I N  T H E  A B S E N C E  O F  
B U O Y A N C Y  F O R C E S  

Putting B = 0 in equation (38), we get for Or= 0 

A .  [ y 2 + 2 y ~ ( 1 + ~ 2 ) + $ ] 2 =  

2 ' 
- [ y + 2 ~ t l + z ~ ) ] .  (45) - 

If A = 0, the equation (45) &comes 
- 

y = - R ( l  + $2)  f [F.(l+ I t  . (46) 

018 1.0 2.0  
y: 

Prom equation (46) it can be seen that for R > 4, 
(in general R > 4 cos 0) ,the motion is aperiodical for 

Fig. s T h e  growth rate Y plotted as a funotion of wave- entire range of x, however, if &! < 4 the damped ossi]- 
number x for B = 5 and R = 0 . 8 .  Tbe values 
of A are 0, I and 6 (0 = 0). lations take place within tbe wave-range x1 < x < x2 

(47) 

where 

Simplxfying equation (45) further, we get . 

A [ [ R I  + ~ 2 )  kai  (-)f ] + x 2 & 2 ~ ( l  + x 2 ) * ~ * = 0 .  (49) 

The ~olution of equation (49) can be easily written 
A - A  B 

Y = - [ R ( ~  + ~ ' ) i ! . t ~  ( + ) ' ] & [ R ' ( ~  + s x a p - 4 ( 1 + x 2 )  -- z2i.;4* (1 + z2)* R ]  . (50) 

Since in equation (50) the coefficient of y is complex with non-zero real part, i t  should have necesmrily 
complex roots. Hence we find that rotation in the absence of buoyancy forces gives rise to damped oscil- 
latory motion tbrougbout the range of wave-number x, in contrast to the case when the coriolis forces are 
absent. Because in the latter case there is always a &nge of values of s for which the motion is aperiodi- 
cally damped. 

I (y), tbe angular frequenhy of oscilIation~, is given by 

- 
The positive and negative signs taken in possible combinations give the angular frequency of four 

n o k a l  modes of oscillations. The expressions for the phase and group velocities can be obtained from 
equation ( 5 l ) ,  witb the help of the following relations. - 

TJ7,z = f I ( y )  , Uq,m = I (y) /dx . (52) 
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