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The large defleotion of a heated elliptio plate wit& clamped dges using Berger's method has been investigatedunder 
stationary temperature distribution. The deflection is obtained in term of Mathieu function of the first kind of order 
2m. 1 

In  the postwar'yesrs we have seen a rapid development of thermeelasticity stimulated by varioua 
engineering sciences. A consl'derable progress in, the field of aircraft and machihe structures, mainly with 
gas and steam turbines, and the emergence of new topios in cl~erriical and nudear engineering have given 
rise to numerous problems in which thermal stresses play an im.portant and frequently even a primary 
role. 

As tbern o-elasticity problems determination of therrnal deflections of plates, e~pecially for thin plates, 
is of vital importance in &-craft struotures and in the designof machine parts,inasmuchasfor th inp lah  
there may be excessive deflections and consequently heavy thermal stresses may be developed and as a 

. result there may not be proper functioning. 

The c lass i~ l  large deflection plate problems usually lead to non-linear diffdrential equations which 
cannot be exactly solved. BergerS has &own that if, in deriving the differential equatioqs from theeqre- 
ssions for strain energy, the strain energy due to second invariant in the middle plane ofthe plate is neg- 
lmted, a simple fourth order differential equation, coupled with a non-linear eecond order equation, is 
obtained. Although no oomplete exklamation of the method is ~ e t  forth, the st. esses and deflietions obtained 
by Berger himself for recttangular and circular plates agree well with those found from morepreciseanaly- 
sis. Tbis approximate method has been extended to orthotropic plates by Iwinski and Nowimkia and 
further boundary value problems associated with rectangular and ciroular plates have been solved by 
Nowinskis. The above technique of -Berger has -been used quite elegantly by Thein Wah and Robert 
Schmidt4 and Nash & Modeer" to  obtain satisfactory results. 

Basuli6 has extended this approximate method of Berger to problems under uniform load and heating 
under stat.ioniky temperature distribution. 

In  this paper the author has a.pplied the method devised by Berger and Basuli to investigate 'the 
large deflection of an elliptio plate heated under etationary temperature distribution. The deflection 
is obtained in terms of Mathieu function of the first kind of order 2rn. . 

N O T A T I O N S  

D .= 
EhS 

= flexural rigidity of the plate, 
12 (1 - v8) 

h = thickness of the plate, 

7 2  = Laplacian operator, 

- 3, v ,  a, = Young's~modulus, Poisson's ratio and coeffioient of thermal expansion, 

Q = uniform load, 

w = lateral displacement, 

u, v = displaceme~ts along the s-and y-axes, 



Rmr. S ~ I .  J., VOL. 26, JANUARY fST8 

e = e,, + em = first invariant, - -  - 

1 
ea = 4 e,$ = second invariant, 

G O V E R N I N G  E Q U A T I O N S  

col$bining the strain energy due to bending and stretching of the middle surfaceof theplatkloaaea 
normally without temperature and the strain &ergy due to. heating, the total potential energy, is g i v a  
by7.'0 

- hi2 

- ~ ~ ] d ~ ~ - s ~ j  (1 Eat - v) rJ (x, y, 2 )  [ e  - z 0 2  o] dxdyda 
8 -hP 

. where the symbol jj indicates int&jration over the surface s of the $la&. 
- 

8 - 

Let the temperature distribution T' (s, y, a) be assumed in the forme 

where T' (5, 9, z) = T~ (5, 9) f g (2) T (5,' y )  (2) 
y2 ' i - - / z g ( a ) d z =  f (h)and g ( e ) d s  = 0 .  ' -. (3) 

-ls/2 - . -h/2 

Combining (I), (2) and (3) the equation (1) simplifies into the form 
* - 

ED? - Q ~ - - { T , ~ ~ - T ~ ( ~ ) v ~ w ) ] ~ ~ Y  l - v  

Neglecting % and using Euler's variational equations, the - .  following - differential - equations are obbhed6 

V2(Va-1B,a)w= - D (Q- 
l - v  E q f ( h )  v 2 4  

where j? f is a norm.lised oonstant of integration. 

A N A L Y S I S  

Let us take an elliptio plate of thickness k. We take the oentre of the plate in the middle surfam 
the origin and z-axis downwards. 
, 
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If there is s o  source of heat inside the plate the following differential equationa must he satisfied 
for' statio~ary temperature distributions , 

-- 
where 0, and 9, denote temperatures at the upper and lower media of the plate respectively. Tho equa: 
tion (8) can be put in the particular form 

where 

Transferring to elliptic coordinates (t, 9) defined by s + iy 1 dl cosh ( f  + iq), where 2d is the 
interfocad distance of the ellipse, the equation (9) reduces to 

32 T a2 T -- 

a t2 -+T- Idi 2 (oosh 2 i  - COS 27, ) T = 0 

The solrttion of (10) can be found in the form -. 

- *' 
(11) 

ta=O - -- 

where Ceam ( f ,  - q) and team (9, - q )  are the modified Mathieu function and ordinary wthieu function of 
the &st kind of order 2m and 

q = C2 a214 

' Imposing the boundary condition 

T = Constant = K on f  = 5, one gets from (11) 

Multiplying both sides of (12) by ce, (17, - q) and integrating with respect- to q from 0 to % and 
using the orthogonality relation m d  normalisations, one gets- 

I - (&, = 2 K Aow/Ceam (Io, - ¶) (13) 
where A,Sm is the Fourier GO-efficient in the expansion of 

' C~an9 (T, - f). 
Also to solve equation (7), we suppose 

8, + 6, = constant - 
- - (14) 

and write the equation in the form - 

O S T o - E ; 2 T a = K 2  * (15) 
where / 

Co = K F  and - - (8, + 0,) = Kg 2 (16) 
Transferring the equation (15) into elliptic coordinates, the general solution is obtained aa 

I - 
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En 
t (6,  q )  = 2 - 0 ~ a m  (6 ,  --qi)?rn ( T J  - ql) - - Klz - (17) 

m=o ' * 

where ql = Ela d2/4 

Let us amume the following boundary condition for To 

To = 0 at t = go (1% 
Substituting (19) info (17), one gets 

Multiplying both sides df (20) by oe2A (q,  - ql) and integrating with reupect to q from 0 to % and 
using orthogonality relation and normalisation, one gets 

where am is the Fourier co-efficient in the expansion of 

team (79 - qi) 
I 

Taking the load function Q equal to-zero, equation (5) takes the form 

00 - 
V' (v2 -- 81') w = - A ~ ' 2  c.. Cea. (5, - -  q) ceV (9, - q) (22) 

9n=2 

- where 

For complementary function of equation (22), we assume 
w = ol + 9 such that V8 w1 = earrd ga ma - pi' = o 

Changing to elliptic coordinates the above equations reduce to 

a2wl 3801 - +- = o  
ata asB (24) 

aBw, @us -+--- BZ " ( cosh 21 - cos 2q 
. ata arid 2 (25) 

Periodic solutions of (24) and (26) which are symmetric about the centre can be represented by 

wl = 2 cwh 2m) cos 2mq (26) 

tn-0 

.S = zDw C* ( P J  - q'), - q') (27) 
a s = O  

where 
I q' = /3: 

Now a particular integral of 
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is necessarily a particular solution of equation (22). Clearly the particular integral of equation (28) is 
given by 

// 

The general solution of equation (22) is therefore given- by 

o = 2 cm w ~ h  2m f COB 2mq + Ce2. (f, - q') eezm (q, -- g') - 
m=o m=o 

If the outer boundary of the plate [ = fo be clamped, we have 

3 w  
W =  -= 0 whenf=to  

a f 
Using the above boiindary conditions in (30) and multiplying the resulting relation8 by ce, (8,  - q) and 
integrating with respect to 7 from 0 to 2 ~ r  one gets, after using normalisation, the constants &, and 
D,, in the forms 

A .  
C2 - PI2 c'. { 2m sinh 2mf0 Ce,, (to, - q) - Ce', (to, -. q) bosh 2&& 

D, = (32) 
0 ( 2m sinh 2 ~ 5 ,  c e ,  ($ - pl) - cash 2mf0 Oetm (to, - qt) 

where 
CD = 2Atm A'$" - Am2m A',,,,* (33) 

A,* and are the Fourier co-efficients in the expansions of Mam (q, - q) and (7, - qt) 
respectively. I 

To determine the constant, B12, equation (6) is transformed t6 elliptic coordinates in the form 

where 
hl = ha = l/d 1/ sinha f + 8inaq, 

The boundary conditions for Ut and U,, are 
U ~ = 0 = U , & t f = f o  ', (36) 

/ 
Let us assume 



DEF. 801. J., VOL. 26, JANUARY 1976 

subject to the conditions P, (to) = Gn (fa) =.O (37) 
The physical situation corresponding to the above assumed forms of Ut and U,, is that they satisfy 
the requisite conditions of immovable edges along the boundary, i.e., inplane displacements &re restrained 
on the boundary. 

> - 
Ut and Uq are also the displacements id elliptic coordinates corresponding to the in-plane displa- , 

cements u and v in cartesian coordinates, and u = 0 alang y-axia a d  9 = 0 dong x-axis. 

Therefore Ut = 0 at q = 4 2  and U,, = 0 at = 0 are the corresponding conditions imposed on Ug 
and U,, . The above forms (36) clearly satisfy the required conditions. 

Integrating (34) over the surface of the plate, one gets 

Substituting the values of w and To given by (30) and (17) respectively, equation (38), after integration, 
becomes an equation for determining &2. 

b -. 8 - 
N U M E R I C A L  C A L C U L A T I O N  

As a particu1a;r case To can be taken-to be a constant, for To = constant is a solutiofi of the differential 
equation (15). I .  

, For determining the deflection at a point one has to start from equation (38) with an assumed value 

Eactf (h)  of /3,2 leading to a particular value of h = - 
D(I-V) 

With these values of h and PI2, deflection w is to be calculated from (30). With the following data 

the central deflection is obtained aa w = 0.0025 (approx:). 
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