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The large deflection of a heated elliptic plate with clamped edges using Berger’s met};od has been investigated under
stationary temperature distribution. The d.eﬁectxon is obtained in, terms of Mathieu f\mctxon of the first kind of order
2m. ) . S -~

\

In the postwa.r years we have seen a rapld development of thermo—elastlclty stimulated by various
engineering sciences. A considerable progress in the field of aircraft ahd machine structures, mainly with
gas and steam turbines, and the emergence of new topies in chemical and nuclear engineering have given
rise to numerous problems in which thermal stresses play an important and frequently even a primary
role, .

As thern o-elasticity problems determination of thermal deflections of plates, especially for thin plates,
is of vital importance in air- -craft structures and in the design of machine parts,inas muchasfor thin plates
there may be excessive deflections and consequently heavy thermal stresses may be developed and as a
result there may not be proper functlomng

The classical large deflection plate problems uqua.lly lead to non-linear differential equations which
cannot be exa,ctly solved. Berger! has shown that if, in denvmg the differential equations from the expre-
gsions for strain energy, the strain energy due to second invariant in the middle plane of the plate is neg-
~ lected, a simple fourth order differential equation, coupled with a nou-linear second order equation, is
obtamed Although no complete exglanation of the method is et forth, the st. esses and defléstions obtained
by Berger himself for rectangular and circular plates agree well with those found from more precise analy-
sis. This approximate method has been extended to orthotropic plates by Iwinski and Nowinski? and
further boundary value problems associated with rectangular and circular plates have been solved by
Nowinski®. The above technique of ‘Berger has been used quite. elegantlv by Them Wah and Robert
" Schmidtd and Nash & Modeer to obtain satisfactory results.

Basuli® has extended this approximate method of Berger to problems under uniform load and heating
under statlonary temperature distribution,

In this paper the author has applied the method devised by Berger and Basuli to investigate the
large deflection of an elliptic plate heated under stationary temperature distribution. The deflection
is obtained in terms of Mathieu function of the first kmd of order 2m.

NOTATI 0 NS
D= EP®  _ fexuralrigidity of tho plate,
} 12 (1—?) - ,
h = thickness of the plate,
V2 = Laplacian operator,
B, v, ¢ = Young’s modulus, Poisson’s ratio and coeffisient of thermal expansion,
Q= uniform load, ’
@ = lateral displacement,
u, v = displacements along the z-and y-axes,

—ou 1 (30)
em—g_l— 2 (3:1:) ?
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Cpy = — o ~
"= 5y + 3 )
e = e, + ¢, = first invariant, - .

1 , . .
€3 = €m Oy — ey® = second invariant;

K: Kl: Kﬂ’ 02’”’-62"’ ng, ‘asm = const.ants, L

U /’ dw w
e‘”— 2y T am +, w3y

GOVERNING'EQUATIONS

(‘ombmmg the strain energy due to bending and stretching of the middle surface of the plate loaaea
normally without temperature and the strain energy due to heating, the total po’oentlal energy, is given
byl

=[] (3 {mor s emsen [ G- (55} -

.—Qw]dmdy ”'f E“‘ T’(my,z)[e——zV2 ]d@dé R | 'fl?

. where the symbol j { indicates mtegratmn over the surface s of the plate.

Tet the temperature distribution 1" (2, y, z) be assumed in the form‘

whore \ T (@,9,2) = To (@, 9) +9 () T (39) - @
me 7 Comz SRR
f zg(z)dz:f(h)and'f g(@dz=0. o S - o ,‘(3') .
Bz L e S '

Combining (1), (2) and (3) the equation (1)' simpliﬁes into the form

e [[[3 (i oo fer 2 5 (25}

] ' . '
Qo= {na=ri @ via} |y f @
Neglecting eg and using Euler’s variational equations, the following differential équations are obtained®
E h
V2 (V2 — Bd) o ——-—-{Q ——————“‘f() v‘*‘T} (5)
. . h2 .
o—(tnur, = ©)

where g8 is a normalised constant of integration.

A.NALYSIS

Let us take an elhptlo plate of thickness s, We take the oentre of the plate in the middle surface as
tne ongm and z-axis downwards. ‘
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“If there is no source of heat inside the plate the following dlﬂerentla.l equatlons must be satisfied.
for statlonary temperature dlstr1but10n3 - ‘ :

VL, (a;»-wz)“'f'_ - 'm

Vaf_éf (1+-e) = ~'41:€ y'(eﬁ&) e

where 6, and 8, denote temperatures at the upper and lower media of the pla.te respectively. The equa-
tion (8) can’ be put in the particular form

VI—r=0 ‘oo | (©)
where ‘ S e
' 12 .
Ct= i (1 + € ) - . »

Transferrlng to elliptic coordinates (¢, ) defined by & + 4y = d cosh (f + ), Where 2d 1s the
mterfocal distance of the ellipse, the equation (9) reduces to ' :

2 T 2 272 se o T : »
2 2 aanf — O2d ‘(qosh 2 — cos_zq) T=0 . . - (19)
The soldtion of (10) can be found in the form
. .T z Ozm Cegm f ““q) Cezm( "—q) _ ‘f‘.ﬁ\ (11) ) '

. m=0 .

where Cegm (£, — ¢) and cegp (1], — q) are the modified Mathieu functlon and ordmary Ma,thleu function of ‘
the first kind of order 2m and

q = C*d?4

'Tmposing the boundary condition
T = Constant = K on f = £, one gets from (11)

Zosm Cezm (fo, _—-q) Coam (n, —q) (12) -

m=0

Mulsiplying both sides of (12) by cegm (1, — ¢) and mtegra,tmg w1th respect“ to 5 from 0 to 2» and
using the orthogonality relation and normalisation?, one gets-

/ _ Cam =2 K A™/Ceyn (£g, — @) ) . (13)
where 4,2 is the Fourier co-efficient in the expansion of
. N . Cj,m (1), __‘q). - ’ -
Also to solve equation (7), we suppose . .

0; + 0 = constant . . (14)
and write the equation in the form =~ = ~ T
| - V3T, — KI To= K, 7 (15)
where ’ ’
e=Kp? a.nd — 5 G+ e,,) ' (16)

Transferrmg the equation (15) imto elliptic coordmates, the general solution is obtalned a8
' - Q
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v To (£,0) = Z asz‘eam . ——ql) Gam ('o, —~q1)-- K’z R k)

where y - . 71 K 2d2/4 ‘) f“,m" SEL T SREC TR 7(18)‘

Let us a.ssume the followmg boundary condltlon for To o | S o il o

S : To=0at £ =¢ - - (19)

Substituting (19) into (17), one gets
., K, o o . | .
K12 = Tom Oezm (fo, —_ ql). Coam {1, — ql) (20) ’
m=0 o ~

Multlplymg both sides of (20) by ceam (9, — 91) ‘and integrating with respect to 4 from 0 to 2r and
usmg orthogonahty relation and normahsa,tlon one gets :

2 (K5/K2) Aoz"* ‘ L@

Oeoyﬁ(fo’ — @) . o
where A_oz’" is the ' Fourier co-efficient in the expansion of I
- ceam (1, — q1)

Taking the load function @ equal to zero, equation (5) takes the form

Com =

V2 (V2 — _,312) w=— A2 03.,. Cegm (£, — q) cea,,,( —_ q) | ’ (22) _
- m=2 S
where -
= _Eufh)
D=y (23)
For complementary function of equs,tlon (22), we assume
@ = w; + wy such that V2 w, = 6-and 2 wy — B2 w, = 0
Changing to elliptic coordinates the a.bove equations reduce to , ‘
%oy Pawy o . ,
T I | | e
dw R, B2 d? : , ‘ o
| af: 4 nz . 12 ( cosh 2£ — cos 27 )w2= 0 ' (25)
Periodic solutions of (24) and (25) which ‘are symmetric about the centre can be represented by
0 .
w; = Z 0'2,,, cosh 2mé cos 2mn ' : (26)
m=0 ’ : : - .
wy == ZDmOezm(f,-—q)ceau(n,—q) (@7
. . m=0 ;
where ‘
] . q' = ‘B.l’ d2/4
Now. a particular integral of = -~ =
(v’ —pr’)a) = — Z 02"; Oezm (f, _ q) Cem (9), -— q) . (28)

m=0
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is necessarily a particular solution of equation (22). Clearly the particular integral of equation (28) is
given by L _ L
o R A » 0 ’ : . ’ ‘

0= — G2z > Oom O (6, — ) cogm (1, — 9 e
’ ‘ m=_0 ; ' . :
The general solution of equation (22) is therefore given by

-] ] . ' ’ .

W = z Com cosh 2m £ cos 2mn + Z Dym Ceom (¢, — q') ceam (q, — ¢') — -

m=0 - m=0

AN ' |
X Z Cym Cegm (¢, — ) Cogm (9, — @) - . (30)
m=0 : )

If the outer boundary of the plate ¢ = £, be clamped, we have

3 @ 0 when ¢ =¢,

Using the above boundary conditions in (30) and multiplying the resulting relatiohs by ceym (1, — ¢) and
integrating with respect to % from 0 to 2= one gets, after using normalisation, the constants Cem and
Dy in the forms ’

B2 Com {Cem (60 — @) c€'om (€50 — 4') — C€'gm (£g, — @) Olgm (&), — 9')1

Om = — : 31)
Aop®™ { O¢'gm (€0,— ) c0sh 2m &, — 2m Cegm (&5, — ¢) sinh 21!0‘50}
__2_}‘_5 Cym {2m sinh 2méy Cym (£, — q) — C€'ym (&, —. g) Gosh 2m¢;
_ 2 — B . :
Daw = : (32
P { 2m sinh 2m¢&, Cem (£5, — ¢') — cosh 2mé, Ce'ym (£, — ') } ~
where , R o ‘

A.0™ and A',?™ are the Fourier co-efficients in the expansions of ceyy (1;‘, — ¢) and ceym (7, — 7)
respectively. ' \ ‘ ’

* To determine the constant, 8,2, equation (6) is transformed to elliptic coordinates in the form

i [ () + 57 () [ [ (5) + (57 )= 2 4 traz, 0

where

hy = hy = 1/d o/ SiE¥ £ + sy,
The boundary conditions for Uy and U, are R .
_ ‘ Ug=0=Upat ¢=¢, ' : (35)

- Let us assume : '

Ug = Z Py (£) cos 2ny

n=0 |,

U,= Z Gn(f) sin 2ny . | ’ | | v(36)
. n=1 . .
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sub]ect to the conditions P, (£,) = Ga (&) =0 : - o ' (37)

The phy%lcal situation eorresponding to the above assumed forms of Ug and U.,, is that they satisfy

the requisite conditions of immovable edges along the boundary, ie., inplane dlsplacements are restramed -
on the boundary.

Ug and U, are also the displacements i i elhptm coordinates corresponding to the 1n-pla.ne dlspla.— .
cements « and v in cartesian coordinates, and 4 = 0 along y—axm and v = 0 along z-aXis,

Therefore Ug = 0 at n = #/2 and Uy = 0 at n = 0 are the correspondlng conditions imposed on U¢
< and U,. The above forms (36) clearly satisfy the required conditions.

Integrating (34) over the surface of the plate one gets

H[( )+(§i}’)]dfdv-_-

2r &
—_— 2(14v) oc,f f T, (£7) (sinh? £ + sin? n) dédn — .
00 '
‘ ) s o p0 S ' . ‘
- — d—gL;—IL f ' f (sinh? ¢ - sin? ) dédn = 0 (38)

Substituting the values of w and T, given by (30) and (17) respectively, equatlon (38), after mtegratlon,
becomes an equatlon for determining 8,2,

NUMERICAL CALCULATION
As a particular case Ty can be taken-to be a constant, for T = constant is a solution of the differential
equation (15).

For determining the deflection at a point one has to start from equation (38) with an assumed value

Eeyf (h) ,
D) , .

 With these values of X and B,2, deﬁectlon w is to be ca]eulated from (30). With the following data
§——0,”)—"/2,§o——3, d=2, 7’—1, BlE=100, =003 oTy=12 X 1073
the central deflection is obtained as « = 0-0025 (approx.).

of B,2 leading to a particular value of A =
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