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The steacty state taugcntial flow and heat transfer of a power-law fluid in an annulus between two rotating co- 
axial porous cylinders in presence of suction and injection has been cons;dered in this paper. The effect of suction 
and injection on the flow fieid has been investigaed. The heat tranafer is considered in two caseb: ( i )  the inner 
wall is thermally insulated and outer wall ia maintained at  a fixed temperature ; ( i i )  both the walls are main- 
tained at  fixed different temperatures, including the case when both the walls are a t  equal temperature. In  the 
first case it has been found that the temperature increases with Brinkmans' number Br or flow behaviour index n ' 
and Br acts as a ~cale  factor. In the second case the temperature increases with the increase of Br or n and de- 
creases with increase of Peclet number (Pe'). In  the second case the Nusselt numbers a t  the cylinders have 
been calculated. 

The arising out of the flow of a liquid in a rotating cylindrical annulus in presence of 
suction and injection has important engineering applications. The problem cd heat transfer in an annular 
dilct is also of great interest in chemical engineering and flow meters. Berman1 considered the laminar 
flow in an annulus with porous walls. Bird and Fredrickson2 have studied the flow behaviour of Non- 
Newtonian (Power Law) fluid in an annulus. Tangential flow in a rotating annulus with viscous heat 
generation has been discussed by Bird and Stewarts. The present paper deals with the studybf the steady state 
tangential flow and heat transfer of a power-law fluid in an annulus between two rotating co-axial cylinders 
with suction on one wall and injection on the other. The main flow is maintained by the rotation of the 
cylinders. The effect of suction and injection on the flow depends on s dimensionless number 8. Heat 
transfer is considered in two cases (i) the inner cylinder is insulated and the outer cylinder is maintained 
at fixed temperature and its equilibrium temperature and the consequent temperature distribution within 
the annulus is determined, (ii) both the walls are maintained at fixed temperatures. In the latter case the 
heat tvransfe rate a t  the cylinder is also obtained. In the first case the equilibrium temperature decreases as 
Brinkman number Br decreases and the material properties such ti% the thermal conductivity and specific 
heat do not alter the nature of the temperature distribution. In the second case the temperature increases 
as Br increases or Peclet number (Pe') decreases and the effect of rotation of the cylinders ia to increase 
the temperature while that of suction is to reduce it. Also the temperature increases as the flow behaviour 
index increases. It is also found that for larger values of Brinkman number .there exists a maximum tem- 
perature in the fluid. 

The fluid is assumed to be incompressible and the fluid parameters are assumed to be constant so as to 
enable the use of velocity distribution independent of heat transfer phenomenan. The equation of motion 
is solved by perturbation technique, considering the suction/injection parameter S as perturbation para- 
meter. The resulting velocity distribution is inserted into the energy equation which on solving gives 
temperature distribution. This problem is of interest in connection with heat effects in viscometry and 
friction bearings and has other engineering applications. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  R E D U C T I O N  O F  E Q U A T I O N 8  

The basic equations governing the flow of Power-Law fluids are the constitutive equation between 
stress components 7~ and strain rate components eu given by 

the momentum equation 



Fig. 1-Tangential flow of power-law fluids in an annulus 
between two rotating co-axial cylinders. 

and the continuity equation 

where m, n, p,  are respectively the consistency, flow be- 
haviour index, density of the fluid and vi the velocity 
vector and comma denotes co-variant differentiation. The 
fluid behaviour is pseudoplastic, Newtonian or dilatant 
according as n < , = or > 1. 

The energy equation describing the transport of 
thermal energy in terms of transport properties of the 
fluid is 

where C,, k and p are the specific heat, thermal con- 
ductivity and density (all considered constant) of the 
fluid, T is the temperature and @ the dissipation function 
given by 

Let a Power-Law fluid with rheological equation of state (1) flow tangentially in the annulus between two 
infinite co-axial porous cylinders rotating about the common axis with uniform angular velocities wl and 
oz in presence of suction on one wall and injection on the other; Cylindrical polar coordinates (r, 8, z) are 
used and the cylinders are identified with the surfaces r == at and r = bl (Fig. 1). Due to axial symmetry 
all derivatives with respect to 13 vanish and the velocity field is assumed as 

which depends upon r only and is independent of 8 and g. 

The physical components of  tresses are 

where 
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The simplified equations of motion governing the flow are 

Equation (11) readily gives p=p (r), which shows thgt pressure is a function of r only. 

The equation of continui$y.tb~palible~@~~vel~y~field is 

In our case the energy equation (4) reduces to 

where 

(14) 
The boundary conditions on the ve1ocit.y field are 

where %, and ub, are some constants. 

Introducing the transformations 
us= .fU0, v =  v / u o ,  p?=%'/pu: 
a = al /L ,  b = bJL, ;R = r/L, (16) 
Ql = WI L/UV,-B2 = L!UB, M = UQ2- Eg/v 

where U, V, P, a, b, R, Sd,, Q2 ri?e?the dimnsionleee quantities, 64 i the Reyn~lda' number, Uo, Lo 
are the reference velocity and reference length, and v is the kinematic viscosity. Using (16) in (12) and 
integrating, we get 

u = -818 (17) 

where S is a dimensionless parameter, positive for suction at  the outer wall and injection at the inner wall 
and negative for their o p p s i i ~  oders, 

Using (7), (8), (16) and (17), the equations (9) \and (10) transforms to 

The boundary conditions cannbe r e d e b  acg 
Ua = b4/Ua, v = Q& R = a;, 

U, = uhltFg, 'V = 8B3*&t R = b. '> 
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Integrating (19), we get 1 

n-- 1 1% + { R ( )  IT +(+) = NSVR + MD- (21) 

where D is a integration parameter depending on S. 

ds.assumed to be very small such as S & 1, and so series solution for obtaining tangential velocity 
, ;-* uwd. w 

and the new boundary conditions are - 
vo5=aQ, Vq=O(q=  1,2, ...., a ) a t R = a  I (23) 
Vo=bf2,, Vq=O(q=1,2 ,  ...., c o ) a t R = b  -I 

Substituting (22) in (i l) ,  expanding 'he left hsnd side in powers of S and equating aoeffiaients of 9 and 
' 

term -independent of 8, we get 
a 

' p + 2 [ + ( + ) ]  ( $ ) = M D ~  
(34) - 

I 

1 [" ( 'o)]"' 2 (3) = MvoR + D l x  nRnf aR R aR R 
(25) 

n-1 

(26) 

eto. 
Integrating these differential equations, we get 

1, Using bound~ry conditions (231, we get - , . 
1 

2 1 -  a;,np,n [Do MI; = - a2/@ - balm T 

(30) 

Sa, aaP - Q2 balm c, = 
qaln 7 Pj' (311 
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Bence the tangential veZagi6cy in the m u ~ u s  ie givenvbx 

P a. - I-; I 

n I R 

V = 4 R - 8 ( D o H )  &" + 
1 
--1 4 I 

M ( D o d )  ,a 
' + s [ c , R -  2 

2 
3 - -  2 1 - -  n 

+ { L R  8 - 1  - 4 B  

La % --2 3. L i - -  4 
n - 1  m n 

C 

IS(@ - 2) (2% - 3) rafJ'# 3 - 
1  4 
--2 G-- 

n - 1  n n - 0," ar" ( D o & )  R  .(t. 
4 ~ ( 2 ~ - 1 )  

2 4 - - 2  6-- 
n ( k - % ) % + I  
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The shem distribution Trg (r) is given by 

7 
2- D SV 
,2u."- ,-@ + x  

1 2 - - -  
- 2  41 A 

+ S : ~ D ~ R  - - ( D & ) . R  +&I+ = R  21 

4 2 - 1  2 - -  
n 

R  + 
2 !,a 2-- _ 1 2  - -  
A 

l M  ( D#)' 8 -1-- + 2 (n-1) 2 

Shear at tb outer and inner walls are given re Y by 

-- *q -,I 

1 
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- - -  _ -  - - -  H B A T  T R A N S F E R  

Introducing the trmaformation 

--- T = Tm + Tc 9 ( R )  and R = r/L (4-0) \ 

where Tm and Tc denote the wall and characteristic temperatures to be appropriately chosen for the 
different-situations. The dimensionless form of the energy equation (13) is then given by 

(41) 

where 

n+ 1 

pet(="=&) k 

are respectively the Peelet number and Brinkman number for powerl law fluids. 

Case I : When thc inner cylinder is insulated and outer is maintained at temperature Fa , we put 
Tw = Ta and choose Tc RS some characteristic temparature in (40). The b s ~ n l a r y  conditions ara then 

- \ dB 
- - 0 ,  a t  R = b ;  8 = 0 , a t  R = a .  
dR - (42) 

Case II  (a)  : When me Inner and outer cylipders are at fixed temperatures Tb and Ta (Ta > Tb) put 
Tw = Ta, Tc = Ta - Tb. The boundary conditions then become 

Case I1 (b) : When both the cylinders are at the same temperature, say -Ta, we set Tto = TG and 
TC is once again some reference temperature as in case I. Thus the boundary conditioag are 



. . ,B&F. $0'1. J., m1 J&?.W&k lBI6 - : 

NOW uJng (22), (24), (28) and (%kin egu&ion (41) and on simplirimtion, we get 
' 3. 

1 - &Pep 3L9 ' 

-3, - -2--. 
- . n *  

2 R  ti^ = - B j ~ & > - k  [*ki~~+- 
. . 

. I) 

Substituting the values of Vw Vl and V2 from (27)-(29) in (45) a d  integrating we get 
1 ... Do 2 T -- Th e - To - ~5 = n r ( ~ ~ b i ~ ~ ~ [ ~ ~ ~ ( ~ + ~ , , )  -R - 6 -- 

n n 
1 

2 F~(D&F 4 
Ra-;-+ 

n 
Dl 2 1 R- - 

+ 2 ( ~  'tl I ++gpet) ' f "  I , 

( 9% -- 
n+l, 
9%-1 -- 

n3 - 29P +w +-2 1 C - " ) ~ ~ - i  + 

1 2 
--1 4 - -  n - l  

4- - ;  lEQf-(D$)n. R -"+ _ 
- 

- 
4- 

3- 

i 
B1/H * . .;--I 1-2 

. 
i ( 1 9 , ~ ) "  .. R "+ . 

2 
( 1  - )  (-1 -- a -6pe1) 

. 
5 - 4  

( Bb$j?) -k % ( a - a )  .. c 

f 2 T kn 4- 
(2%-1) (4 -n  - t~pe '$ p F 

m - 
2 

Y- 
(46) 

I 
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BPe' - - 
- " "  

= & + a ( R , f i f S , P e r )  += * - - - 
" 4 ,  . - 1  - 

(4'7% 
I L 

k ,  3 
Case I : Solution for the case d e n  the inner oyli+er is insulated and the out& ii%ermally mndobt- 

&& . . \ 

Using the boundary cqnditions (42) in (46) bhs keqerature ihtfibution in .the aamdaa is ,given bf , 
' b  - L  " " .- 

\ 

0 = B. { $ & ( ~ , n ,  s,!Pef) + s(t", %,"S, ' , p e t , )  - & (  la, a, S,pet.3 S . - 6 -  . '  . - 
a 8 P e t ,  &'Per 

" ~ 

+ "  

, F (by,-&,$, Pd7 ) W e '  '-:d4g - t ~ ,  a, S;sf)er ) b8Per - : (48) 

where 
*-- 

d { OB ( R, n, 8, ~4')) * P ((R, s,8, Pet ), '1 2% I 

I (49) 
a + ~  = F  ( a , s a , S , ~ t ? ) ;  - 
dR &=a: -1 dR ~ = a  =E(b,n ,B,Pe' )  J 

Case II  (a)  : Solution for the case when both the cyhde.i.s are at  Bdereri-t %tqmi&ude. 

Wsi~lg (43) in equation' (46) we get 

1 - Br [ 4. ( a, n, 8, Per ) - 4 b  ( b  n, S, Per) 1 
+ e = Bf #B ( R, 92, 8, Per ) 4 e,' , @!WE r 

B, [ +a ( a, B, S, Pe' ) VPe' - +r, (b, sa, $, Pet ) asper j - b*et 
4- a8pe"- ($pet ' . (50) 

Rate of heat transfer per unit afe"HW% knef @j%rf4%6r Zs~l$Bn %f - 
g= . - 

" - .. . - .  . ?  
. . , * -  * * .  

- , -  
A . u s  - - -= 

' I  
I 

(H3. 
r 

where h(r) is the coefficient of heat transfer, hence tlie non-dimensional heat transfer rate is given by 
- 

R = b  (52) 

2333 Srsm p) - 

- .  3 *P-(-b,.a,-S,Pc?-'j-+- . - 

1 - &$ -(a, N, 8,-Per ) - QQ ibi a 8, ~ e ' $ j b p ~ " l  SW 
3- @Pet - .@Pet  (53) 

kodb of b a t  tmndm per finit area a t  the outer wall is given by , 

'p.=*L -%'@)i pa.- gb j L - 
. .. 

L r" . i* 
-39; 
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Hence non-dimensional heat transfer rate is 

XI d R  R = a  = B r F ( a , ~ , 8 , & ) + '  ( 7  

+ 1 - Br [A (a, n, 9, Per) - C (b, a,  S, Pe') am,- 
&Pel , @Pet 

1 sP~'  (552 

where F (a, ~n, 8, Pe') and F (by n, S, Pe') are defined in (49). 
C 

Case II(b) : Solution for the case when both cylinders are at  equal temperature. 

Equation (47) under the boundary conditions (44) becomes 

-t- Br - 4, (a, B, S, Pet) b8Pat - $b (b, a, S, Pet) aspe' 
aspet - bSPel 

I 

The 'temperature profiles given in (46) and (56) differ by the terms 

and also these start with zero and end with the zero a t  the inner and outer walls respectively, so the profiles 
are the same Do, we need ngt plot them again for equal temperature case. 

The Nusselt number (Nu) at  the inner rand outer cylinders are the same as (53) and (55) respectively 
with terms 

SPel b8Pe'-1 SPel a8Pe'-l 
aSl.e' - bBPe' and aspet - b8P.c.' 

respectively omitted and Nu tends to zero as Br tends to zero. - - 

DISCUSSION OF RESULT8 

, Convergence of the sol~~A%ows : Basically it is assumed that he perturbation parameter X (Suotio~l 
injection parasmeter) is very small, such as 6' << 1. Therefore series solution given in the expression 
(22) for obtaining velocity is justified where my ~~cceedipg term'is far less than its preceeding term : As 
such throughout the treatment of t'he problem the inequality Vo > SVl > S2Va > . . . . > SmVn.Dis used. 
Agah the velocity profile is continuous throughout the range (b G R G a) of the annulus and its value 

TABLE 1 
VARIATION OB VELOUITY WITH FLOW BEH~VIOUR INDEX (n) AND SUCTION/INJECTION FARAMETEB (S) 
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lies between a P1 and b Qa. Consequently the expression (36) for the velccity plofile is rapidly convergent, 
which is fu~ther illustrated by a numerical examples (Table:! 1 and 2). By the eame reasoning the expre~sions 
(37-391, (45) and (46) are also convergent. 

Vdooityj?eld : The radial component of velocity is given by (27) and varies inversely as the radial 
distance. In the absence of the croJs flow (8 = 0) the tangential velocity isgiven by 

which shows that whether the walls are solid 01 

porous, even the first order solution exhibits the qffect 
of Power-Law index lz on the flow pattern. Putting 
n=l in (57! we obtain the results gbt;inbd by Bird 
et als. 

In order to get an understanding of the quali- 
tative response of the tansentid velocity to an 
increase in flow behaviour i d e x  n, and the suoti~n and 
injeotion parameter 8 we consider a  articular c w  
in which the outer cylinder is rotating with uniforln 
angular velocity GI, while the iwex cylinder i& 
stationary, 8, = 0. For aumerical alompvtation we, 
choose M = 1 ,  a = S ,  b =  1, G2=0, Q l = l .  
S = & 0.01, & 0.1, 0 . 2 ;  Vis aalculakd for n=1,3, 
1, $3 and its values are tabulated in Tables I and 2 
The plot of V versus R for n = 113, 1, 4/3, S = + 
0.01, 0.1, + 0.2 is plotteu in Fig. 2. From the 
tables and figures it is found that velocity dgmwes 
as the flow behaviour hdex, n, inoreases. Also when 

1.0 1.2 1.4 1.6 1.8 7 . 0  s is positive, an increase in 8 deoreases velocity 8s 

f = R  seen from Table 1 and pig. 2, while for opposit 
1 - r order of S the response of velocity is reversed (Table 2). 

Big. 2-Variation of veloaity of power-law fluids in a rota- 
anndue with suotion and injeation. 

31 
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Fig. 3-Response of temperature ih pseudoplastic fluid 
(n = 113) to an increase in Brinkman number & at  
Pxed Peclet numberre' = 10 in a rotating annulus. 

1.0 I .2 1.4 1.6 

R 
Fig. 5-Response of temperature ih Nkwtonian tluids (n=l) 

in a rotating annulus to an increase in Brinkman 
number (Br) at  fixed Pel= 10. 

a. 11 

R 

Fig. 4-Response of temperature in yseudop~astic fluid 4% = 113) - to  increasetn Brinkman number (Br) a t  fixed Pe'= 100 in 
a rotating annulus. 

R 

Fig. 6-Response of temperature in Newtonion fluid (n = 1) to 
increase in Brinkman number (Br) at  Pe' = 100 in 
rotating annulus. " 

W 

Fig. 7-variation of temperatme in diratant fluid (n F 413) Fig. 8-Variation of temperat= in djlatant fluid (n = 413) 
with Brhkman number (Br) a t  fixed Pe'r 10. with Brinkman number (Br) a t  fixed Pe' = 100, 

32 
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Temperature Poeld : If dissipation, function is ignored, the energy equation (13) becows 

which, on integration along with (17) gives 
RSPet , @Pet ' 

8 = - @Pet t 

which shows that in the abslossnet, of dissipation funbtion heat transfer is independent of flow parameter 
n, and it has the same value whether we consider the Newtonian or Non-Newtonian power-law fluid. 
In the absence of cross-flow i.e. S = 0, heat transfer is - 

1 - 2 
na (-; 1 

O = N B r ( D o M )  --Do% ] + A I l o g ~ + d 2  " [  4 
which, when B = 1, gives the results obtained hy Bird and Stewart3. 

In order to awess Ghe qualitative response of heat transfer due to the effects of n, Br, Pe', we give 
numqrical values to these pa-ameters. WP take = 113, 1, 4/3; Pe' = 10. 100; Br = 0.1, 0.6, 1, 6, 
8, 10; S = 0.1, M = 1, a = 2, b = 1, Qa = 0, 0, 3 1. The variation of 8 with n, Br; Pe' is given 
in Tables 3 - 5 . The plots of 0 ve-sus R for diff,:rent values of n, Br, Pet for care I are given in 
Figs. 9 (a, b, cj and for case I1 in Bigs. 3, 4,5, 6, 7 aqd 8. The graphs depict thempelves the behaviour of 
the tempera.ture varia, tion in pseudokb stic, Newtonian s nd d ila,tanl fluids at different Brinkm8.n number 
a.nd Pe~let  a t  b e d  S =OS 1, M = 1, in the case whes outer cylinder is rotating and inner oylisder 
is stationary. On the basis of Lhe comparative study of the data given ili the Tn)bles 3, 4 and 5 and 
that of the temperature profiles given in the Figs. 3-8 the following facts are found. 

TAB- 3 

VARIATION or e WITH Br AXD Pet XOB s=1/3 B=0.1 

R/Br 0.1 0.5 1 2 5 8 10 Pe' 
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TOIE 4 
VABIATION OB 0 WLTE BT AND Pe' BOft %=I, 8-0.1 

R/Br 0.1 0 .5  1 2 5 8 10 Pe' 

1~00000 1 ~00000 1~00000 1~00000 \. 1~00000 1 .00000 1 00000 10 
2 1.00000 1~00000 1 ~00000 1 00000 1~00000 1 00000 1~00000 100 

TABLE 5 
VARIATION OE 0 WITH BT AND Pe' FOR n=4/3, S = 0.1 ' 

I 

10 Pe' 
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The tem.perature a t  a point in the annulus increases with the increase in rt or with the increa,se in Br 
and it decreases with the increase in Pet. It can be easily seen from Bigs. 3, 5 and 7 that for all lz and for 
all values of Br the profiles are concave downwards for small value of Pe' (in our case Pe' = 10) and 
tends to a straight line when Br = 0 and SPe' = 1. Figs 4,6, and 8 show that for large values of Pe' (in our 
case P'e = 100) the profiles are Erst c?nca,ve upwards for lower values of Br (Br < 2 for n = 1, 413 
and Br < 5 for lz = 1,3) and afterwards they become ooncave downwards for higher values of Br (Br 92 
for tt = 1, 413 and Br > 5 for n = 113). If Br is large enough there exists a unique temperature , 
maximum, and its position shifts away and away in the fluid with the increase in Br from the outer 
rotating wall (at bigher temperature. This pheno~neqon is more pronounced ass Pe' decreases. Also the 
temperature maximum increases as Pe' deoreases, 

1t can be easily seen from (50) that the outer wall is heated or cooled according as 

Br > or < XPe' SPe' / [ ( + a  ( f i 9  4,pe') - QS t, n, y ~ e ' )  1 

The temperature distxibution given by (48) is plotted in Bigs. 9(a, b, cj for rt = 113, 1, 413 
respectivsly a t  Pe' = 10, S = 0.1 and Br = 0.1, 0.5, 1, 2, 5, 8, 10. It is found that the equilibrium 
temperature of the inper insulated cylinder increases with the increase in Br or with the increa ,~  in rt 
and the temperature distribution in the annulus between the cylinders becomes more and more uniform 
for small values of BY. In  this case Bracts as scale factor showing that the thermal conductivity and 
the specifio heat of the fluid do not alter the nature of the temperature distribution. 

Hence, it is concluded that the temperature in the rotating annulus increases with the inorease of Rr 
and deoreases with the inorea se of Pet; consequently the eeect of rotation of the cylinder is to increase the 

Pig. 9 (a, b, 0)-Temperature distribution in power-law fluids in a rotating cylinderioal annulus (inner wall insulated) for v m ~ ~  
Brinkman numbers (Br.) Where for : (a) n=1/3, Pe'=lO, S=O*l. ( b )  n=l, Pe'=lO, B=0.1. (0) n=4/3. Pe'.=io, 
S=O* 1. 
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