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Apomted obstacle is assumed -symmetrically placed with respect to a uniform supersonic flow ahead of it.
It is assumed that an oblique shock wave attached to the leading edge of the obstacle appears from the vertex
so that the flow after the shock is along the surface of the obstacle.w In- this paper a relation between the
curvature of an attached shock wave and that of a stream line is discovered. It is concluded that in a steady
flow of an ideal dxssocxatmg gas, the stream lings” at-the rear of a strmgh attached shock wave are necessariry
curved lines, whereas in an ordinary gas flow only a straight line flow is possible behind & straight shock.

The sudden and abrupt changes in the medium due to the appearance of discontinuities created by the
motioh of supersonic jet-aircrafts cause electronic vibrations effecting the balance, stability and control of
the jet-aircrafts. Several researches have been carried out in this field to overcome or to minimize the
effects of these undesirable vibrations.

The non- equlhbnum flow past a blunt body have been discussed by Freeman!, Gibson and Marrone?,
Lick3 and many others, Sedney and Gerbert have treated the problem of determination of shock
curvature and flow variable gradients at the tip of a pomted body in a non-equilibrium flow. Shankars
studied the singular surfaces of order one in non-equilibrium dissociative gas dynamics. Recently Ram
and SharmaS treated the problem of regular reflection of an  oblique shock in a plane flow of an -
ideal dissociating gas in the presence of transverse magnetic field.

In this paper we have discussed an interesting problem of the occurance of an attached shock wave in
an ideal dissociating gas at the nose of a pointed obstacle. We have obtained an interesting relation under
which the effects of compression due to the shock can be minimized. We have also established an interesting
relation between the curvature of the attached shock wave and that of a stream line.

In case of hypersonié ﬂights the kmetlc energy of the re- entermg craft is dissipated by the atmospheric
gas through shock compression and viscous heating. The air molecules after absorbing this kinetic
energy may go through a change of chemical compos1t10n For the sake of simplicity a diatomic gas
mixture is taken and each component of the gas mixture is assumed to be therma.lly perfect. The tempera-
ture range is taken to be 1000° K - 7000° K so that the only chemical reaction involved is that of dissocia-
. tion and thus electronic excitation and ionization are neglected. The radiation heat loss from the mixture
and the molecular transport effects leading to viscosity, diffusion and heat conduction are also neglected.
In a dissociating diatomic gas the state of reacting mixture is uniquely descnbed by the independent
parameter such as the pressure P, the temperature 7'-and the atom mass fraction ¢~ In a frozen flow the
atom mass fraction remain constant.

BASIC EQUATION

A simple dissociating gas is defined as a mixture resulting from a dissociation reaction in a symmetrical
diatomic gas 4,, each A, molecule beingmade up from 24, atoms.

The reaction is

K
4, +X = 24,1+ X,

K
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where the species X can be either 4, or 4, K;and K, are the reaction rate constant for forward
and reverse reactions. Assuming the gas to be L1ghth111’s7 dissociating one, the equatlon of continuity for
the atom mass species for the steady flow can be-written®

15 = b0 pa sy oxp (—22) — i } ()" 1 o

.\ o = 4p. r d %) exp T‘ ’_P“ RT, ( +°‘)'a (1)
where V/ is the two- dlmensmnal nabla operator in the (zy, ,) plane p and & are- respectWely the
density and velocity vector of the gas mixture for two-dimensional flow under consideration. D, «, R, #; and
T4 are respectively the dissociation energy for unit mass, atom mass fraction, the gas constant for 4,, the
characteristic density and characteristic temperature for dissociation.

The equations governing the two-dimensional flow under consideration are® :

p(Vd) 4+ &V p=0, | @)
p(#V)a+VP=0, - - - 3)
p(V)h+ @V P=0, | . (4)

where the specific enthalpy A of the ideal dissociating gas is given by
' P -1 '
h=;(4——l-oc)(1+;&) - *+aD. B
In view of (1) and (5), the equation (4) can be written as
- 4 D , 7. ]
@ P+ szfV‘u—fg pky (_I—ifd) {Pd(l —a) exp (— Td) ——po{,2§ X

X’{?)P‘——pD(l‘—I— a)z}, - ) | (6)

where a; A is the frozen speed of sound given by
a2 = P(4+ «)/3p.

The variation of P over the temperature range 10000 K - 7000° K is very slight. Hence for practical
purpose, we may regard p , 388 constant.

SHOCK WAVE ATTACHED TO THE LEADING EDGE OF A POINTED OBSTAQLE.

Let us consider a plane uniform flow of an ideal dissociating gas and suppose that a pointed obstacle
with its vertex at ¥ is placed symmetrically with respect to a uniform flow infront of it. Let 8 be the angle
which the tangent to the obstacle at V makes with the z,-axis in the direction of flow infront and g,-axis
is perpendicular to this direction in the plane of motion. Let ¢ be the angle which the tangent to the shock
makes with the direction of flow infront. When the flow reaches the obstacle at V, it will deflect an angle
- 8. Now if the angle 8 is less than the corresponding maximum angle of deflection across an oblique shock,

the flow conditions may be represented by an oblique shock attached to the leading edge of the obstacle so
that the flow after the shock is along the surface of the obstacle®. )

Let the shock-curve in a two-dimensional steady flow be given by
r=r(, - KU

where 7 == (%;, x) is the position vector of a point P on the shock and the parameter s measures the
arc-distance along the shock-curve. If £ and 5 respectlvely denote the unit tangent and unit normal

vectors to the shock at the point V, then

337‘=t\, 9%t = kn , 3m = —ki, . ‘ (8)
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where K is ohe curvature of attached shock wave at the pomt V. We define the propagatlon of shocls
wave normal to itself, Let jump in any quantity Z across the shock be denoted by (Z) = Z-Z, where Z

and Z, are values of Z just behind and just infront of the shock respectively. The geometrical compatl- :
bility condition of first order for the study of discontinuities in the continuum mechanics i -

(vZl=1(a v21+wFVEM)t.1 e

' The fundamental system of equatlons for the discontinuity in an ideal dissociating gas flow can be
written asi _

[k+yﬂ;b;‘

IPI+ptnlua] =0, (10)

[pun]—-O

where us = @°%. . If we define the compression. strength 8 of the shock by rela.mon 8.=[p]/P, we can
deduce the fo]lowmg jump conditions from equation (10). '

Lal=—8(148)  unn; .
[P1=8(1+8)" puts, | an
© §isgiven by the quadratlc equamon | ol
‘ | L0+L18+L 82 =0

where ’
Ly=mp, (1 +°‘1){1 +oy+[a] —;—(—lql_“or)}[“]f’
: Ll—“z‘i"'ﬁl(l+°‘1)“21n’—8"P1{4+(5+°‘1)°€1}+8"'x
e ><{29 ﬂ(1+°€1)(1+“1+[°¢]) P1(7+°C1)}[°ﬂ] .
L2 = 47rp1 (1 + o) (1 +a; + [«]) (2D [“] — “21n) — 8""1)1
X{4+(5+°€1)°€1+(4+°‘1)[°‘]}
xz;Axls
Tn case of an attached :shock it oan be shown that <~ < 4 ’ | f m‘?g:gc?

the strength of the shock depends upon the wave =~ = .
angle ¢, the angle which the free stream makes - ‘
the tangent to the shock, In view of (11) and

from with the Fig, 1, we have ‘ T

TANGENT TO
THE OBSTACLE °

X\~ AXIS

=2 = ot ¢ tan(¢—0) (1+3)—1
1

SONORMAL TO

hence, we get THE SHOCK

§=sin fseod cosec (¢ —6). = (12) g 1 asteched shook wave past & pointed obstacle. -
, : : "
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‘Incidently from (12), we conclude the following important results :

e (7) The physical appearance of an attached shock wave is possible only when ¢ satisfies the inequality

0<¢<lr

: (%) In order to reduce the compression strength of the shock to the minimum the seml-vertex angle
0 of the pointed obstacle should satisfy the condltlon .

- f= 2—(94‘%)

. The importance of these results can be very “much reahsed in practical acronautical problems. In
fact the strong shock waves may cause sudden change in the aerodynamic behaviour of high speed Jet-
aircrafts which effects their balance, stability and control by producing undesirable vibrations. The appear-
ance of an attached shock wave is frequently observed by Jet-aircraft pilots 12, The wave angle ¢ can
be measured by optical methods. Thus by employing observational techniques and modelling the Jet-
aircraft accordingly the compressions in the gas due to an attached shock wave can be minimized. The
vamatlon § along the shock curve is glven by - . ‘

(V) s=—th o m
where ' S

§*=sinﬁcos(2¢—-0)/(cos¢sin(¢-—0))2.

Differentiating (11) along the shock curve under the assumption of uniform flow infront of the shock
~and using (8) and (13) we obtam ‘ ,

FrUP=—28(14 8 hpyua iy — (1+ 82 thpy b, (14)
(7 V)a= k(18 umi + b+ (81 + ) uy+Luw)n ,  (19)

where = ;" i oand =i n. By virtue of (9), the equatlons (1), (8) and (6) can be transform-
ed into the following fo1ms )

'u»(”V)P'I'"A(I V)P-I'P” {n: V)"+~Ft (t )“—-0 (16)
pun(n'V)u+pu,(t'V)u+n(n VP)+i (¢ VP)=0, : (17)>

(R TP) (TR (v (8 V)BT (VI =)
! (18)

=4pK,(-;E)2{3P—pD(1+m)2} {pd(yl ~m)§xp (—» —gi).——pa" } J-

Taking dot product of (17) with » and using (18), we get
—- - ‘ 1 - '__ —
w-(n'V)ﬁ:—..—’-,{ﬁ,(y;’.VP)—{—,m2 . (3 V)ﬁ——- » ‘
—puatyn ({°V)a+n)(ut—a?)?, (19

where

= o) {e—water} oo () -m}.

41 ) ~ - 1 '
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’ Taking dot product of (17) with7, we get
pini (B V)E=—{p@i (i V)i+ (G- VIPL (@0
The cuﬁaﬁure K of a stream line is ngenby B o - ‘
VPE= — Cit, Yi Uj Wi

~ where »
s V2 =Y Ui, e = O =0, ey = — 321":‘1— ,
Range of any dummy index say (¢) is taken 1, 2 and‘é/f,cemina followed by an index say (j )

denotes partial ‘differentiation with respect to- the corresponding- coordinate #;, -

The curvature K at the rear of the shoek at v is thus given by the expression.
RV3={t@n. (n.V)a—a%*{ (%" VY)afugac (b V)E— -
—wun g (1" V)a}. | " (21)
Substituting from (14), (15), (19) and +(20)," the éqﬂ@ti(}n' (21) can be written in the form

K —2q¢ cosv'q'S = ¢b 4 cos? ¢ { 8 (paf + ,;Mafz cot ¢) -+

 (pUMaty— Sy atysin2g) (1+48)7 — (14812,

- CBeMaay Ly sin g g £ B2 o) tan g —
—pM{(1+8) %%}, i ‘ '. (22)
where
o u?sin g : - (u»“’ _ )
§= o (Ira)m and,M =\a 7).

The relation (22) providesa relation between the curvature of an attached shock wave and the curvature
of a stream line at the rear of the shock at V.. e ‘

Incidently from (22) ‘we conclude that in a steady flow of an ideal dissociating gas the stream lines at
the rear of a straight shock can never be straight whereas in absence of dissociation only a straight line
flow is posgible' behind a straight shock wave, '

‘Now, if the pointed obstacle is taken to be a wedge of semi-vertex angle 6 with its vertex at V then
the curvature of the stream line at ¥ becomes zero and consequently the relation (22) determines the
curvature of the shock wave at V. Hence, we further conclude that the attached shock wave in a uniform
two-dimensional flow past a wedge hecomes curved, on account of dissociation, ‘ :

/ ;6‘






