THE STABILITY OF A VISCOUS FLOW BETWEEN TWO CONCENTRIC ROTATING
POROUS CYLINDERS WITH AN AXIAL FLOW :
S. K. Bar. & K. M. Karur

Defence Science Laboratory, Delthi
(Received 9 November 1974)

The combined effect of a radial and axial flow on the stability of a viscous flow between two concentrio rotating

linders has been examined numerically when the gap between the cylinders is assumed to be narrow. Numerical
results show that the radial velocity induced by the suction of fluid from the outer cylinder tends to destabilize the
flow whereas injection has a reverse effect.

The classical Taylor problem of the stability of Couette flow between two rotating cylinders
in the presence of an axial flow has been stvdied theoretically by applying different approxi-
mate methods by Chandrasekhar®3, Di Prima4, and Krueger & Di Prima’. In all these studies, the
.spacing between the cylindrical surfaces is assumed to be small as compared to the mean ra-
dius. Chandrasekhar? solved the problem by averaging the axial flow and the angular velocity
distribution in the annulus. His results obtained by applying Fourier expansion technique for
case of p> 0 (where p is the angular veloeity ratio of the cylinders) only, have been found to
be fairly accurate by subsequent works. Di Prima‘ has studied the same problem by applying
Galerkin method. By not averaging the axial flow, he was able to show that for smaller values
(up to 30) of Reynolds number R associated with the axial velocity, it is quite reasonable to
replace the parabolic profile of axial flow byits mean value Krueger & Di Prima’ have extended
this problem for the case of counter rotating cylinders ie. when g << 0 . Experimental studies
of this problem have been made by Kaye & Elgai®, Donnelly & Fultz5 and SnyderS. The experi-
mental results are in general in agreement with the theoreticel results. -

In the present work we have studied the effect of suction (or injection) on the stability -
of flow between two rotating porous cylinders with and without the presence of axial flow. Our
study is restricted to the case of small spacing between the cylinders and for p > 0. We
have averaged the axial flow and not the angular velocity distiibution. The resulting sixth' order
differential equation with variable coefficiente has been solved numerically by a numerical tech-
nique developed by Sparow, Munro & Jonsson (1964). Earlier Bahl! examined the effect of suction
without any axial flow and solved the problem analytically by using Chandrasekher’s Fourier ex-
pansion technique. ‘

EQUATIONS OF THE PROBLEM

The steady state solutions of the basic equations of motion and continuity governing an
axisymmetric flow between two porous rotating cylinders with radial and axial flows give the velocity
distribution in cylindrical coordinates ( 7, 68,2) as
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where
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(3P/32), is the constant axial pressure gradient and W(r) vanishes at r=RE;and R,. 1In the above
equations (u,, g, #,) are the components of velocity in (7, 8, 2) directions, Ry, 2, are the radius
and angular velocity of the inner cylinder and E,, £, are the corresponding quantities of the outer
cylinder, p the density and » is the Kinematic viscosity. *

Perturbation Equations

Now we superimpose small axisymmetric perturbations on the above stated steady state ‘motion,
Let the new disturbed velocity components be given as

-

U= U(r) + u(r ot k)

ug = V() + v(r S+ k) @
vy = W) +w@)ds? ™

= -@(') e'-(Pt + k2)

where

8

W= > P 18 a constant and % is the wave number,

Substituting these in the basic equations of motion and continuity and neglecti ‘
ratic terms in the disturbances, we get the following equations ¥ glooting the quad-

i i(p+ kW o
vbDD,.,—-kz—— -(-]-,——r—l]u——uDU—~UDu+2—:—/'v=Dw (6)
i o(p+ kW)
v _DD*~k2~—(—L,,—— ]v—(D*V)u——(D*v) U=0 (6)
i t(p+ kW ' :
v _DD,,——-kz—-—(f—;——-—)-]w—UDw—uDW=ikz7; N
Dyu=1tkw | (8)

where
d d 1
Narrow Fap Approzimation

Applying narrow gap approximation by taking d = (R, — R;) to be small as compared with the mean

R, +R,

radius —=5—— , We can replace D, by D. Also we get
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where
'l — d2 3P
: N T (Tz ),,
and .
-, t=(r—R)d

/
R is the Reynolds number corresponding to the mean axial flow Vm

Now elﬁmnatmg w & w from (5) to (8), non-dlmenslonahsmg the resulting equations by measuring
20 d2 2
distances in terms of d and transforming u to __1v_“_ u, we get the following two equations in the

light of narrow gap approximation

[(‘Dz———az);-i {a+ﬁRae{1—c)}] (bﬁ—az) u — 12¢ Rau

=[1—-(1——y)gi]v ' )
[(Dz_az —q {a+6Ra§(1——§)}]
=—T(1+A/2)a2(1——761+701C)‘u7 (10)
where . . A
D=d—§,a=k¢1 a='pjf.1'='_:ﬂ%§'\_‘?_1ﬁ istlie Taylor numberandl&:%% .

Replacing the axial flow by its average value and ehnunatmg v from (9) and (10) we get the
following equation in w.

Dby — 2ag Do -+ ( 202¢F — 3a? — %6 ) Dty +

+(4a%ad + 2Gagi ) Dou +[ — 40 0242 + 30t —
— G ¢ (402G — H + 20264 )] Dy —

— (2aa'¢ + iCyad ) Du + [(2a2a4¢2 +C3) +

Fi@0+ 0) + T (—htRE) (142 [u=0 ay

where -
a=(p—1)
¢=1/(1+at)
G=a+Ra,H=12Ra
0y =2(aG—2H) .
C; = (a*6 — a8 — HG)
and C; = a*H — 206G
Boundary Conditions

The requuement that all the disturbances in velocity components ‘vanish at the bounding
. surfaces {,= 0 and{ =.1 gwe the followmg cond_ltlons under which the solution of (11) is sought.
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TasLe 1 i

VALUE OF ORITICAL TAYLOR NUMBER T, FOR DIFFERENT VALUES OF A AND p

A oop R=0,0=312 R—60a=3 10 R=200, a==3+40

o=0 o= -—-12 o= —55'7
0.0 1-0 B L7o1 Y 1,740 2310
: 0.75 1,44 1,988 2,623
0+50. 2,258 © 2,305 2,951
. 0425 2,666 2704 3,007 .
1.0 S 1.0 - 1,193 1,203 11,625
0.75 1,367 1,397, 1,844
ST . e L 0650 1,386 .. 1,620 - - - 2,072
R : 0-25 1.874 1.903 2,182
2.0 1.0 928 970 - 1,287
0-75 1,080 1,10 . 1,460
050 1.257 . 1284 . 1643
_ 025 7 1490 - .. 1507 1732
3.0 10 804 ’ 833 1,008
0-75 921 940 1,236
£ 050 ¢ 1,067 . . 1,088 1,397
0.25 ° © 1,262 1,281 1,469
—1.0 1.0 3,266 - 3316 . 4399
“0e75 - - .. 8701 v - 384 4,986
0450 U7 ames - 4385 C 6l
0.25 . 5085 _ 5,141 5,895
—1-10 IR 10 34n 3,665 5,120
0-75 4,081 4184 5512
7 050 o 4750 - 4,764 6,203
S 0425 5,601 . 5884 . T 652l
T 120 o 1.0 ‘4,011 4,103 5,437
‘ . 075 4583 - 1884 6173
" 0e50 5318 5428 . 6,043
0-25 6,270 6,364 : 7,208
=20
Du =0 : “ L oatl=0&(=1 (12)

Dy — (22 +4G) D=0

Solution

We assume three solutions w;,u, & u, of (11)
for 'the presonbed values of B, A, o, R and q,
which satisfy the condltlons (12) and in addition we
assume

D3u2=1,’v .D2u2=D5u2_=0 at§ =0

Doug =1, D2y, = DPuy = 0 ' AP o7s .080. . 02%

l—-The variation of the log of the omtmal Taylor
number T with x for R=0, 0=0 and g=8.12. The
values of A are shoWn on the curves.
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s b
Fig. 2—The variation of the log of the critical Taylor Fig. 3—The variation of the log of the critical Taylor
number 7'¢ With u for B=5.0,0 = — 12.6 and ¢ = 3.1. number T'¢ With u for B = 20.0, ¢ = — 55.70 and
The values of A are shown on the curves. a = 3.40. The values of A are shown on the curves.

Now combining (12) and (13) we get six boundary conditions at {= 0 for each of the solutions
w;, u; & ug The solution of (11), yielding the minimum value of I' depicting the onset of
instability, is found by a numerical technique based on Runge-Kutta method. The details of this
numerical technique are given by Sparrow et. al.® ' Co

RESULTS

By assuming p 3> 0, we have computed the critical values T, of Taylor number for A = 0,
1,2,3 —1, —1*1 & —1.2 for Reynolds number R = 0,5 & 20 and for different positive values
of u, the velocity ratio of the cylinders. The results have been presented in tabulated and gra-
phical forms.

For the case of no radial velocity (A = 0) and for p = 1 the results are i excellent agree-
ment with those of Chandrasekhar®. The caseu =1 corresponds to the averaging of the angular
velocity of the fluid in the annulus. In case of suction of fluid from the outer oylinder (A > 0),
the values of the critical Taylor numbers decrease for all values of R. Thus suction of fluid from
the outer cylinder tends to damp out the disturbances with and without the presence of axial
flow. Similarly injection of fluid (A <0) produces an opposite effect. The negative value of A has
to be less than 2 in magnitude, as had been observed by Bahll. All the calculations have been
carried out by fixing d/R, as 0.1,

It may be pointed out that by applying the same numerical technique, this problem can
easily be solved even by taking the axial flow to be parabolic ie. without averaging it. However,
1t has been observed by D. Prima® that the error introduced by the averaging of the axial
flow is negligible for small Reynolds numbers, say up to 30.
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