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The oombined effect of a radial and axial flow on the stability of a viscous flow between two concentrio rotating 
c$indera has been examined numerically when the gap between the cylinders is msumed to be narrow. Numerioal 
results 8h0w that the radial velocity induced by the suction of fluid from the outer cylinder ten& to destabilize the 
flow whereas injection has a reverse effect. 

The classical Taylor problem of the stability of Couette flow between tvo  rotating cylinders 
in the presence of an axial flow has been studied theoretically by applying different approg- 
mate methods by Chandrasekhar2'8, Di Prima4, andKrueger & Di Prima7. In all these studies, the 
spacing between the cylindrical surfaces is assumed to be umall as  compared to the mean ra- 
dius. Chandraeekhar2 solved the problem by ave~aging the axial flow and the angular velocity 
distribution in the annulus. His results obtained by applying Fourier expansion technique for 
mse of p > 0 (where p is the angular velogity ratio of the cylinders) only, have been found to 
be fairly accurate by subsequent works. Di Prima4 has studied the bame problem by applying 
Galerkin method. By not averaging the axial flow, he was able to show that for smaller values 
(up to  30) of Reynolds number R associated with the axial velocity, it is quite reasonable to 
replace the parabolic profile of axial flow by its mean value Krueger & Di Prima' have extended 
this problem for the case of counter rotating cylinders i.e. when p < 0 . Experimental stud& 
of this problem have. been made by Kaye & Elgar6, Donnelly & Fultz6, and Snyder8. The experi- 
mental results are in general in agreement with the theoretical results. 

I n  the present work we have studied the effect of suction (or injection) on the stability 
of flow between two cotating porous cylinders with and without the presence of axial flow. Our 
study is resitrioted to  the case of small spacing between the cylinders and for p 2 0. We 
have averaged the axial flow and not the angular velocity di~t~ibution. The resulting sixth order 
differential equation with variable  coefficient^ has been solved iiuinerically by a numerical teoh- 
nique developed by Sparon, Munro & Jonsson (1964). Earlier Bahll examined the effect of suction 
without any axial flow and solved the problem analytically by using Chandrasekhsr's Fourier ex- 
pansion teohnique. 

E Q U A T I O N S  OF THE PROBLEM 

The steady state solutions of the basic equations of motion and continuity governing an 
adsymmetric flow between two porous rotating cylinders with radial and axial flows give the velocity 
dietribution in cylindrical coordinates ( r, 8, z ) as 

= w ( r )  



where 

( a P / a ~ ) ~  is the constant axial prewure gradient and W(T) vanishes at  r=Rl and R2. In the above 
equations (w, uo, u,) are the components of velocity in ( r, 8, s )  directions, El, Ql are the radiu~ 
and angular velocity of the inner cylinder and R,, Q2 are the corresponding quantities of the outer 
cylinder, p the density and v is the Kinematic viscosity. ' 

Now we superimpose mall axisyametric perturbations on the above stated steady state motlon, 
Let the new disturbed velmity components be given ae 

{(@ + k) 
UQ = V ( r )  + v ( r )  e I 
- - i ( ~ t  4- -f-1 
w = w (r)  e J 

where 
8P - ra= - ; p la a conatant and k is the wave number. 
P 

Substituting theee in the basic equations of motion and oontinuity and neglgting the quad- 
ratic *me in the dieturbancee, we get the following equations 

. [ O D . - P -  i ( p  +'I) ] v - u ~ - U D W  =ih6 
v (7) 

D , u = i k w  
(8) 

where 
d D = &  and D, = - d 1 

dr + ?  
flwrou) Gap Apprmimatiolt 

Applj~ng narrow gap approximation by taking d = (RI - Rl ) to be Rmall as compared Kith the mean 

radius :R2 , we can replace DI by D. Also we get 
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where 

and . . 
I f = ( r - Rl )/a 

R is the Reynolds number corresponding to the mean axial flow V,. 

Now elhinating w & 5 from (5) to (8), non-dimensionalising the resultting equatiog by meamring 

20, d2 a2 
distances in terms of d and transforming cc to u , we get the following two equations in the 

v 

light of narrow gap approximation 

where 
a ,Pa2 

D =  ;r(, a = k d ,  a =-.T = 
M - 4AR2A ' is the Taylor number an4 a = - 

v va R2 ' 

Replacing the axial flow by its average value and eliminating v from (9) and (10) we get the 
following equation in u. 

D6u - 2 4  D5u + ( 2a2+2 - 3a2 - 2iG ) D% + 
+ ( 4  a2a+ +2Gor+i ) D u - 4a2 a2+2 + 3a4 - +[ 

-.Ga + I ( 4 2 8  - a+ 2a2G5b2 )] D% - 

where 
a = ( p - 1 )  

+ = I!( 1 + aC ) 

G =  a + Ra, H = l2Ra 

Cs = 2 ( a2G - 2H ) .. 
C2 = ( a2G - as - HG ) 

and C, = a2H - 2aW. 

Boundary Conditions 

The requirement that all the disturbances in velocity components vanish a t  the bounding 
sslrfac.es f ,  = 0 and ( = 1 give:the following conditions under which the solution of (11) is sought. 
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 TAB^ 1 

VALUE OE CBITICAL TkYLOB XUMBEB To 30% DIBTBREii'l' VALUES OF h AND p 

Solution 

We assume three solutions ul,  u2 & u3 of (11) r * -  , . 
for the presoribed values of. p, A, o, R and a, , 

which satlsfy the conditions (12) and in addition we 
as8ume 3 .I. 

cU 

s " .  

1 
3- a. 

D 2 U , = 1 ,  P u ~ = D B U ~ = O  

\ 

D S u , = l ,  D ~ ~ c ~ = P u ~ . = O  
(13) 

1 ,  D % , = P ~ c ~ = O  ? S T  1.00 0.75 050 , . 0.1, 

. b 
Fig. 1-The variation of the log of the oriticsl Taylor 

number To with p for R=0. 0x0 and a d .  12. The 
vslma of A are shown on the curves. 
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Fig. 2-The variation of the log of the critical Taylor Fig. 3-The variation of the log of Che oritioel Taylor 
number Tcwitb pforR=5.0, a =  - 12.6anda= 3.1. numberTowithpforR= 20.0. a=-66.70and 
The values of A are shown on the curves. a = 3.40. The values of A are ahown on the c urves. 

Now combining (12) and (13) we get six boundary conditions at  [= 0 for each of the solutions 
%, u2 & u,. The solution of ( l l ) ,  yielding the minimum value of T depicting the onset of 
instability, is found by a numerical technique based on Runge-Butta method. The details of this 
numerical technique are given by Sparrow et. al.9 

R E S U L T S  

By assuming p .> 0, we have computed the critioal values Tc of Taylor number for X = 0, 
1, 2, 3, -1, -1.1 & -1.2 for Reynolds number R = 0, 5 & 20 and for different positive values 
of p, the velocity ratio of the cylinders. The results have been presented in tabulated and gra- 
phical forms. 

For the case of no radial velooity (A = 0) and for p = 1 the results are in excellent agree- 
ment with those of Chandrasekhar2. The caae p = 1 corresponds to the averaging of the angular 
velooity of the fluid in the annulus. In case of suction of .fluid from the outer cylinder (A > 0), 
the values of the critical Taylor numbers decrease for all values of R. Thua suction of fluid from 
the outer cylinder tends to damp out the disturbanbs with and without the presence of axial 
flow. Similarly injection of fIuid ( A  < 0 )  produces an opposite effeot. The negative value of h hae 
to be less than 2 in magnitude, as had been obkrved by Bahll. All the oalculations have been 
carried out by fixing d/Rz as 0.1. 

It may be pointed out that by applying the same nunerical technique, this problem can 
easily be solved even by taking the axial flow to be parabolic i.e. without averaging it. However, 
it has been observed by D. Pnma4 that the error introduced by the averaging of the axial 
flow is negligible for small Reynolds numbera, say up to 30. 
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