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The aerodynamio characteristios of a lifting body are studied for the case ofa non-uniform oncoming stream at
supersonio speed past a thin oscillating airfoil at a small angleof attack. The two motions are assumed independent of
each other and the coupled motion is analysed using the theory of small disturbances. Analytic solution of the
linearized problem is then obtained by applying Laplace transformation to it.

The meajority of fluid flows encountered by the aerodynamicist are turbulent. As the statis-
tical theory of turbulence applicable to subsonic regime is well developed, extensive work has
been done on the response of airplane to atmospheric turbulence. This, howeve:, is no longer so
at supersonic speed; even though, supersonic aircraft cruisingin the stratosphere occasionally en-
counter sudden and unexpected oclear air turbulence (CAT) and the difficulty of control in such
circumstances is, further, accentuated due to high speed of the aircraft’. The present study is,
therefore, motivated by the desire to learn something about the effects of turbulence on the aero-
dynamic characteristics of a wing at such speed.

In the absence of any suitable statistical model for supersonic turbulence, the case of an
unsteady oncoming stream past a thin oscillating airfoil at a small angle of sttack ‘is examined
in the first instance. From the results of this case one may expect to get some indication of
what an ambient atmosphere would do to the characteristics of a lifting body at supersonic speed.

NOTATIONS

Uz, t) = free stream velocity 0y = phase angle
U, = basic steady velocity Wa (2, t)= prescribed down wash
b = o¢hord length L () = Lu(Y) -+ Lu, (t) total unsteady lift
¢ = time Lo () = lift due to the oscillating airfoil
By speed of sound Lo, () = lift due to the fluctuating flow
(] = complete velocity potential M () = Mo (1) + Mo, (t) total pitching
é = complete perturbation potential mome;nt
v — volume occupied by the gas My () = 'pitch.mg.moment due to the oscillat-
t,,t; = time instants at which conditions 11.1g a%rfoﬂ
are prescribed Mo, (1) = pltchfl[ng moment due to the fluctuat-
_— - ing flow

== t
) frequency of the osmlla. ing airfoil o — density of the medium
g = frequency of the fluctuating flow . .

—  reduced fr £ airfoil y = ratio of specific heat at constant
k = Teduced irequency Of airiol pressure to at constant volume
ke = reducf‘;d frequency of .ﬂ<.)w. ' M, —  Mach number
(2, 9,2) = :};):1{)0231;;:6 system (origin is fixed .m A ~ Bessel function of order zero
h = vertical translation amplitude 0. @) = g::}l&i(;l;eal and imaginary part ros-
€ = ocomplex amplitude of the flow * = at the head denotes non-dimension-
) = modulus . alized form of the variable
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GOVERNING EQUATIONS

Wé assume that there exists a disturbance in the atmosphere independently of the passage
of airfoil through it. Therefore, the free stream is assumed to vary

D@o=0, [1+adn(t )] fo 2t 0

The fluid flow considered is inviscid, compressible and irrotational; the airfoil is thin and of in-
finite span at zero incidence and executing small escillations in vertical translation only (plunging
motion). Since the gust motion is assumed irrotational, it is justifiable to assume the motion in-
duced by the airfoil to be irrotational also. In view of this, the equation to be satisfied by the
velocity po’centia.l & is Written in the variational form? )

—Y_
. 2 1 -> . > ]'y—-l _ ‘

J fff [ + U( 0—22 — S0 Wit=0 ()
where .
= fU»(x, tYdx + ¢ : 3
and ‘ '
- S . L. " . »
g = grad &, : ‘ ‘ (4)
The exact equation (2) is non-linear and is solved by applying an 1terat10n ine, , which is a

small parameter characterizing the size of the small disturbance, to it. Thus, giving the first order
perturbatlon equation ' :

z
a£ vﬁd): at_l_ w 39‘ + ¢+za Gw) lwo(t—-m (5)
at dxzat
Equation (5) is hyperbolic in the present case and is being solved subject to the tangency condition
, ] B
32 z=0—'Wa(w:t)’0<$<b ‘ (6)
and the up stream condition |
. , ) :

The noso of the airfoil is located at the origin in a moving frame of coordinate system, z-axis
pointing vertically upwards.

Solution to Perturbation Eqmmon

The non-homogeneous equatlon (b) is solved by letting

p=19 +x | 8)
go that ¢ satiaﬁes .
«ﬁ ¢ 3?2y \ .
2 T2 Y = 2 .
ag V¥ a t20, T T U )
and X
?x ?x a? rat cando (P— e
a Vix= G +20, aw'at+ v ax); +iad (cwg) e ™ (t ) (10)
The boundary conditions satisfied by ¥ and y are A
- ey :
7 lsmo = Nal@); 0< 2 < b , (1) -
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and

» 0 agd , (12)

respectively.

Since the solution # will vamsh up stream of the plane z = 0, the functions y must also Vamsh
there, i.e.. , ,
X=Xx=03't$=0(x:c= ix_) . .. (13)
. 3z
The solution to (9) subject to the boundary conditions (11) is well-known8, while to that of (10)

is, most readily, obtained by first separating the exponential time factor and then applymng to 1t
the Laplace transformation with respect to x . Therefore, after substituting

. z
X =x (2,2) (t - W) ' (14)
into (10), one gets : S
dx 2 _1 X1 fwy \ ax wy \? .=
Denoting the Laplace Transform of x1 by x1 , and applying it to the (15) one has ‘
d?x : ) 21~ .-
e =[(M3—1)32+2("U"’°)s+(&) :le-]—?,(ewo)—l- (16)
where s is the transformed variable. At the same time, the boundauy condition (12) becomes
d x1 o
=0, < 15
do|smo 02 0S80 (7
The solution ¥, of (16) sub]ect to the condition (17) reads
- 3 (¢ @)
= o, R : wy \2 1 -(18)
M2 — 2 0 0 |
cuz = [ 242 (g2) (=7 )+ (32) (3= )]
for 2z>0% ‘ -
Inversion of which yieldst
0= — e [y (g ite =) +
=T U [P T T e g ) T
T . wg M, : ‘
+ i sin ( T ) ) } ] (19)
Defining now the reduced frequency of the fluctuating flow as
bo
ky-= 0 20
0 Uw (20)
8o that -
- k. M2 .
| “=wr-n @
The complete solution of the first order problem is, then
A b ‘ —io (2* —£¥) o
L (O T — w * ¢ J( *___*). *
s, 00, 0= vm.jl_! a0 e T T g (e ) e
. P M3—1 , — : —
- ? (€ wg) — i ;}; z* _ —dw* [ @, "
ool | ¢ ® ) o (3 =)+
T . , § Wl : T
+ sin ( 0 o* ) } ] e : : : 22
7 M, S (22
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where
to
Wa (6% ,1) = —itwhe
and ‘ |
bo — M2
C ¥ = K = = — = —®
& zfb, & £,k T @ M1 (23)

Lift Distribution over the Airfoil

Compatible with the second-degree terms in (5) and modified to include the disturbance in the
flow field, the expression giving the approximate pressure relation becomes

. x
*,1) = — 3¢ U, 3¢ 2" TS _
P (2*, 1) Pw( Y + 3 P +p, U € ( °°) (24)
Total lift and pitching moment are now obtained by integrating

l(“’*:t)=_2p(w*:t) ' (25)

the amplitude of lift-distribution, between the limits 0 & 1.Thus,

1
L@ =5 f l@*,#) da* = Lu () + La, (t) , say (26)
0
1 .
M@ =b f (o, 8) do* = — Mo (1) — Ma, (1) , S57 @)
) l .

The expressions for Ly (t) and — M, (¢) which give, respectively, contribution to lift and pitching
moment due to the oscillating airfoil in a uniform stream are the same as given in reference? ;
while L, () and — Mo, (f) which give respectively, additional contribution to lift and pitching
moment due to the fluctuating stream have their real and imaginary parts, as

Ly () =-(-——2; )[cosZ) sin( &, )— 1 sin & sin( D ) _
Po 0 UG M, K 0 M, M, 0 M

- ]
— M, sk | (28)
L, (%) __( 2¢ )[ _— ( @ _ 1 R 3,
————pw bUT = 7 8in, iy 8In ———Mw ) + i, cos\wocos ( T, ) -—
_ ___le — M, (1—oos ko)] (29)

®

1L i (= )+ 2 (1 conmyens -2 )

k{,{ Sm%sm(Mw) T (1 cqswocos(Mw))—

l!ll’ sinao'sin(ﬁ"’ )}—I— %('—{kOSinko—(l—cosko)}] (30)
o w

_Mwo(i) - ( 2_€ ) . - . ( wo » 1 u_’o
P02 \M_k, 8IN e, 810 Mw) + w, COB w, €08 (M—w) + .

—Mw(r)__( 2e [ o (ao S . N
waz"U: == kao) cos <’y 8In Moo) T smwocos(M )+
_l_
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1 G 2 einancos (2
+ T § oos @sin (1;‘; ) — g7 5in @ 008 (ﬂ_‘:) +

Cuse (1) : If wy = 0, i.e., there is a sudden change from U, to U, (1 -+ €) in the free stream velo-
cily, & quasi-steady state, the values of the total lift and pitching moment are obtained by
taking limit as wp-> 0 '

Hence,
%ﬁ?ﬁgv = — 250e':0o [ 1— WZITlT] ; ' (3‘2),
and

Expression (32), obviously, gives zero lift for M2 = 2, no matter what 1 the value of the velocity
pitching moment, on the other hand, remains unaffected by the change in Mach number.

Case (2): If wy = o, the values of the expressions (28) to (31)are obtained by replacing w, by w.
NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS

It is for the Case (2) that the values of the mid-chord derivatives are calculated for Mach
numbers 12, 1:6 and 2'0; and for ¢, = 00125, 6, =0, b = 0:5b. The results -are given in the
form of graphs, separately, for real and imaginary components of the lift and pitching, to facili-

%

tate their comparison with those of Temple and Jahn.

As1s usual mid-chord derivatives are caloulated after transforming lift and pitching moment
to an axis distance 4 b aft of the leading edge. We have, therefore, plotted : L(f), L®), — M(r)
and — M() defined as ' :

3.0

PRESENT ANALYSIS

YEMPLE & JAHN (3) -——- PRESENT ANALYS(S

TEMPLE b JAHN (3"

7
{ O 404
'™
[N
- 3
& 0301 > 2004
] [ 4
< z
w o
3 to <
0-201 2
Y
1654
010 Ny

1O
. v —— r ' \ N 3.0
o0 05 1-0 s 2.0 25 3.0
REDUCED FREQUENCY (k) REDUCED FREQUENCY (k)
Fig. 1—Values of the real part of the 1ift against % for Fig. 2—Vula>of the imaginary part of the lift against

Mw = 1.2, 106, and 2.0- lcfor Mw = 1029 1.6 and 2.0.
137



Dz, Sor. J., Vor. 26, OororEr 1976

419+ ,
Py -==~= PRESENT ANALYS!S . .0 2.6 3.0
/ \ ‘oo i i e - e
/A = TEMPLE & JAKN (3) REDUCED FREQUENCY (k) oms
Q71 !
]
-9.05 ’Mo="‘
.00 J
z 30 3
% %010
2 -0.10;
g 07 .
5 '1._; -0.15 4
- &
S, 14 >
«
< F -020 ~==— PRESENT ANALYSIS
« g ~—— TEMPLE & JAHN (3)
- o214 z '
3
~D- 25 1
-.204 ) \“J/
d ' -0 303
Fig. 3—-Values of the real part of the pitching moment Fig. 4—Value of the imaginary part of the pitching
against &k for ¥, = 1.2, 1.6 and 2.0. moment against k for M, = 1.2, 1.6 and 2.0.
) b b . b :
L) = lz —I—- T Lwo('r) L( = lz + W Lwo (") (34)
e b - . b .
—_ M) = —m, — % Ma)o (T)’ - = — Mz == Tk Mwo(") (35)

against the values of the reduced frequency k (= ko) ; where I ,l;, —m. and —m; have the same
meaning as in reference,

The numerical values obtained, here, show that the additional term due to the disturbances
in the atmosphere contributes sigmficantly to the values of the lift and pitching moment. It is
observed that the effect of the additional term 1s to decrease the value of lift acting on the
airfoil. In the case of pitching moment the tendency of the additional term is to increase its
magnitude for lower values of the reduced frequency (0 < k < 1.5), and to decrease for nigher
frequency range (1.5 < k < 3.0). Moreover, these effects increase with the increase in Mach
number. This clearly shows that outside disturbances must be taken ‘into account for any correct
evaluation of the forces and moments on a wing in a moderately supersonic flight.
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