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V. K. Gupra*
Armament Research & Development Establishment, Pune-
(Recetved 5 March 1974)

This paper describes the four basic equations of internal ballistics which have been modified for composite charge
consisting of N-charges. These equations have been solved numerically using Runge-Kutta method. A computer
programme is developed which gives all the ballistic parameters from shot start to shot exit. :

In order to keep the ‘all burnt’ point well within the muzzle even in case of the lowest charge in the
multi-charge Gun/Howitzers and to keep the maximum pressure within the specified limits, composite
charges which consist of a mixture of grains of two or more nominal sizes usually with the same composi-
tion, but quite often with different shapes are used in modern field guns. The general theory of com-
posite charges has been discussed by Clemmow? and Corner?. Clemmow has discussed the two composite

_charges of the same composition, but of different shapes and sizes. Corner has considered the more general
problem of two charges of different shapes, sizes and compositions by reducing the problem to that of a
single equivalent charge with adjusted parameters. After Corner and Clemmow several authors viz
Kapurd45, Venkatesan and Patnis, Aggarwal?, Gupta® and Tawakley? have discussed the problem of
composite charges under different conditions. Most of the authors have attempted the analytical solu-
tion of the equations which are not integrable without several assumptions and approximations. This fails
to provide accurate pressure-time and pressure-space curves which isthe most important requirement
for the design of new weapons especially which departs materially from the existing ones.

In the present method the four basic equations of internal ballistics namely, (¢) rate of burning equation,
(#) ‘Resals’ energy equation, (444) equation for the form funcions, and (iv) the equation of motion, have been
modified for the composite charges consisting of a mixture of grains of ‘n’ sizes, shapes or compositions,
and have been solved numerically using Runge-Kutta method. Pikes rate of burning constant™ g known
to give good results with orthodox guns has been used with a linear law of burning. ~The assumptions
about the linear rate of burning is not really necessary for the numerical solution and the author!® has solved
the internal ballistics equations for recoilless guns with a similar method taking the power law of burning
in which case pressures being of a low order a linear law of burning isless accurate. A computer programme
is developed which gives the ballistics design parameters f, p, #, v and ‘¢’ from the instant the shot starts
upto the shot exit. The flow chart for the computer programme is shown in Appendix to this paper.

NOTATIONS

For the ith component charge, let F;, C;, D;, Bs, ¥i, wi, &, %, f; represent respectively
the force constant, charge mass, propellant size, rate of burning constant, ratio of propellant gas specific
heats, co-volume per unit mass, propellant density, fraction of charge burnt at time ¢’ and the fraction
of web size remaining at time 7. ' ‘

Let 4, Ky, , W, P and V represent respectively the bore area, initial chamber capeity, shot travel at
time ‘. the projectile mass (corrected for spin etc), mean gas pressure at time ‘¢’ and the shot velocity at
any instant, ’

The subscripts B, 0 and 3 represent conditions at total charge burnt conditions, at shot start and at
the muzzle.

BASIC EQUATIONS
Before ‘oll burnt’
The four basic equations for the internal ballistics of orthodox guns using a composite charge can be
written as follows :—

(?) The law of burning away of the propellant grains or the equation for the form functions
coefficients is :

a=Q1—f) 1+6[) (1)
#Prefent Address : Directorate of Vehicles, M’ Block, New Delhi.
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(#) The equation for the rate of burning of the pfopella.nt grains is :
D;. df; _ ‘
B ow =P . @

('m) The Resal’s energy equation is :

ZF.C’.z.—-P[ 0+Az-—z o.z.m—z (l—z.)]—i—
+(;21

)[W+§io.-.]vz | (3)
t=1

Y = y1 == Y2 =¥ .... ya : Since y is practically same for all propellants.

(t) Equation for the motion of the projectile within the barrel is :

(W+§Zo.) _ 4P s @
f=1 .

After ‘all burnt

(¢) Equation of motion of the projectile remains the same.which can be written as

vav

W]. dx = AP or,
14 AP
@ _ Ab (5)

Az W,V

| W1=W+:1".znoi
i=1

(#) After ‘all burnt’, the expansion of the gases behind the shot is adiabatic
| PEK = PyK;
where K & K p are the chamber volume behind the shot at any instant and at ‘all burnt’ respectively.

therefore
P PB[(K0+AwB-—-zC'.n.)/(Ko—I-Aw'—zUim)']y ®

From 2) the followmg relationship between the web- fracmon remaining to be burnt for various chrages
66y, fys fao o oo fu—1 and f, can be obtained:

where

& By _ Dy dfs _  Dag dfs) _ Ded(f) __p
B, dt B dt S " B d Bn dt
- therefore
B D,,. . _ . _
fo=14 o fo—a )i;wherer=1,2 .. .... (n—1) (7
r ll .
when the smallest size is burnt f; = 0 -
therefore

= 1— [(leﬂl) [@uie |
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. Similarly, when the 7 size charge is burnt
fam 1 [(D,/ﬁ» / (p,./ﬂ,.)] / :
writing ) I
= I:(D'/ﬁ')/(Dn/ﬁn) ] ,wherer=1,2 .. .. .. (n—1)
The following important conclusion is made. - ' o

Before the charge of =% size is burnt f, > 1—¢, and after that fo<1—1¢n ;‘

Using equations (7)in (1) ; % can be determined at any instant in terms of 6, {r (the known
constants) and. the variable f, only. . . .

For r=1,2,.. .. .. (n—1) —_ ’
-t [t (0]

4

[ $(oa)]

L

2 = ¢(01,-;1;fn) .

2y = ¢(0z Lo, Jo) 1 8

Znmy = G(0a-1, Ln1s fu) ;

the value of 2, (the largest size) is already known in terms of 6, and f, i.e.

Defining the functions :
é (0, &

2= (1—fa) (1 + Onfn) J
Combining equation (5) with equation (2) ie. ‘ -
‘ Dy d(f) _
Ba dt
we have
v 4D,
e WiBa
AD, _ : ,
V= W (o—1) _ (9)

(For convenience only f will be wrltten henceforth for Jn which is taken to be the.independent vari-
able for numerical 1ntegrat1on ; Jfo 1isthe value of f, at shot start)

writing ¥ = = ‘fi_: and again combining this with (2)
| & _ Da T
—_— = 10
| T T B P o (10)
Also for the determination of ‘¢’ equation (2) can be written as ’ ’ ‘ .
= dt Dn ) / - | '
—_— = — =2 P 11
7~ (& )
SITMMARY OF THE -EQUATIONS TO BE -SOLVED
Before ‘all  burnt’ C '
dz _ Ds V " o :
E df Bﬂ P 'A’Q(V’ P) (12)
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at Dx

F T RP % (P)* (13)
AD ’
V = W (fo_f) = '/’v (f)* | (14)

From equation (3)

P =[ (Zu FiCix—3(y—1 WM Vz)/( K°+A$_Zno"zm’.'—i%(l;z‘))]
~ i=1 i=1

= [ (ZFcC’tzi—%(;—l) LA Vz)/(vA (w-l-l)—ZOizs (m— -1’-) )]::ﬁ,(z;,V,w)*

1

where - (16)
< C
4l = Ky— Z Y.
t=1
%1y %3 «« es .. ..2%; Aare given by equations (8)
After ‘all burnt’ R
av 4P ‘
T =y =@ S (16)

P=PB[(xB+'z')/(m+¢')]’ (17)

where
n
Al = Kc—-z 0.'17;
tam] .
and the equation, ‘
dt 1 )
w= 7= %0 (18)

SOLUTION OF THE EQUATIONS
From shot start upto ‘all burnt’

Upto shot start the ballistic solution is that of a closed vessel. Putting @, V, ¢ equal to zero at shot
start f, is caloulated by assuming the value of P at shot start as Py in' (18). The values of 2, 2,
.. 2y are put in terms of f from equation (8). If the value of £ so determined is < 1 — ¢, it is under-
stood that the shot does not start until the lowest size charge has burnt. As such z, is put equalto 1 and
Jfo 18 determined again. This time the value of f, is again compared with 1— {,. If this value of f, is
<(1—{2),%22 is put equal to 1 and so on till the value of f; is less than 1—,. After determining
the f, the remaining web fraction to be burnt i.e. f, is divided into ‘n’ parts of equal step length %’.
The differential equations (10) and (11) are than solved by Runge-Kutta method as follows :

Initial conditions :— z = 0,V = 0, P=Py,f=fp,t = 0.

bi=9.(V,P)(—h)  V=4(f)
hy= 4 (P)(—h) 21=¢ (01, {1, f)

* ¢ and $ are the functions defined for ease of miﬁng and also for computer programming.
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T =% + k1/2 ) 2y = ¢ (023 €2,f)
S=fo—h2 Z—1 = ¢ (01, {n1, f)
a m= (1—f) 1+06sf) )

¥ f<(l—20) n=1

This value of f is successively coiupared with(l —¢)(r=1,2..........0tllf<1—¢_,but
> 1¢,. At this stage 2,23 .. .. .. .. .. %_,areallequal to 1 other valuesof z,,2,_; .. .. .. 2, are given
as before.

Taking these values ofz; (¢ = 1,2, .. .. .. .. n)
P=x/1,(z1;z2 ce e e e z,.,V,\w)
Now
by = e (T, P)(—h) 3 b= 4(P)(—Ph)

This process is repeated in the Runge-Kutta way to get the values of kg, k,, I3 and I, to give values of

z = ®y+ (by + 2k +- 2 &5 + £,)/6 ¢ = to+ (4, + 203+ 21, + 1,) /6
V and P are calculated at the end of this step i.e. f = f — h. The initial conditions are now changed
to be the values of the value of z and ¢ at the end of the previous step. The process is repeated till f= 0
i.e. upto ‘all burnt’, :
After ‘all burnt’
The remaining shot travel after ‘all burnt’ i.e. (z; — zp) is divided into equal number of step length
each equal to A’
The solution is progressed as follows :— ,
Indtial conditions : z = @, V=Vp P=Ppt=1{lgandf=0
by = ¢o (P5, V) (') V=Vz+ k2
h=1Vg ky=¢y (P, V) (")

P=PB[(wB+l')/m2+l')]y ly =1/¥

In this way ks kb, l; and I, are caloulated which gives - -

V=Vgt+ (ki -2k +2k+%)/6 ; t=tg+ " +2L+2,+1)/6

the initial conditions are changed and the process is repeated till x = z,. Having determined the
ballistic parameter as above it is now simple to draw pressure/time, pressure/velocity/space curves.

From the above it may be noticed that the above solution is very easy, provided a computer is used,
The equations that have been solved above, have been derived from the fundamental theory of internal
ballistics as given by Corner? for single charge without any other approximation and assumptions. As such
the above method gives results which matches closely with that of the experimental values. The
author tested the above method with composite charges consisting of three sizes and shapes for which
experimental values were available. The results being classified information are not reproduced here.

FLOW CHART FOR THE COMPUTER PROGRAMME

A flow chart for the computer programme to calculate the ballistic parameters ¢, V, P, z and f from
start to shot exit for composite charges consisting of three sizes, shapes or composition is given in Appen-
dix. The programme can be extended to cover more number of sizes etc., if required.
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FLOW CHART FOR THE COMPUTER PROGRAMME

MAIN PROGRAMME

)

{READ 0i+C» 1/6],F;,M;50;, Pj
(=1 TO3),Ko,Xg ,A,W,Po,n, 0"

‘XB‘_O E

Y

. 3
s [Ko,z|c;'/s;]/A-*—
i

§=D,Ba/0spy

3
pe—] wi=|=osw+;l;=§:;]/3

%2=0283/03B2
P, =Po =P
COMPUTE maxe PRINT
fo [*lh=-foInf™F=Fo=fo ™y po,v,x0,F0[™
=T5To=V2O

CALL ]
SUBROUTINE §
Xo=X ke X
fetd To=T |k 22
vezv | |'" "n
k =0, (P,VON B
T,Zu‘\'f ’ ke=@v(P VK ﬁsﬁ;(mv)h
=
X = Xo# R Tp2ilv 1P ds (xothir2
P = ®p (X) VorVo+kg/2 P2y (xothl2)
V =Votks '
i y .
ka= Oy (VIR |l vavot (kr2k g#2kark,)/6
Taz\/V TaTo+(Ti+2Ty+2Ta+ Ta)/6
)
PRINT To=T,Xo =X
T,P,V>X Vo=V "I
PRINT  [Os¢ - - .
XBsPmax sV X=X3 Pnax~P, Prax =P
@ 45,0
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Pmax = Pyax >

SUBROUTINE—I

APPENDIX

¥, =¥ (P
X =Xot+K/2

®-" T =", (:I) *

3 =F.+h12.v=qi.<F5

[}

ko= 4 (V. P)b
X =Xo*Kg/2
Taz g+ (P)h

P = 0p(Z2,,2,,V5%)

A

: k,=l'g(V,P)I\
! X = Xofk,

P é‘(”(zl.tzg.nz; ,V,'X )

F =Fe+h
Vv =%y (F)

z; - ¢‘H!°l’°|)’)
2,% B(y,02:0,,F)

2,= Q-FXH'QQF)
XaXet(bo2kyt2kgeki) 3] P oy 2y 2, V,X)
TETo (T 42T#2Ty T )/6 [t kg 2y, (V,P)h
P'.f(t,..‘lpz,,.v.x),_ TQ:V; (Ph v
PRINT -
TRV, X,F X=Xy Pmax-P Pman= P
PRINT | P o= >
Pmax ,V ‘max= Fmax ;::#

)

O, =




