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Large deflection of an equilateral triangular orthotropic plate, resting on elastic foundation has been solved for a
uniform load throughout the plate. General expressions for deflection and bending moment at a particular point
have been obtained and the limiting values of the theoretical results have been verified with the known results for
small deflection and without any elastic foundation of the corresponding isotropic plate. Theoretical results have also
been presented in the form of graphs, - . .

Triangular reinforced concrete slabs are sometimes used as bottom-slabs of bunkers. Thus the design
of this type of structure is of practical interest for Defence. These slabs may rest freely on soil or sand and
generally are subjected to a uniform load. If the thickness of the slab is small compared to the other dimen-
sions, then it may be regarded as a thin orthotropic plate resting on elastic foundation and subjected to a
uniform load.  Within the elastic limit, the deflection of such plates may be large, i.e., the deflection is on
the order of the thickness of the plate, When a plate undergoes large deflection, three differential equations
for displacement and deflection may be written, but it is usually difficult to obtain solutions of these equa-
tions because of their non-linear character.

Various problems of large deflections of thin plates not resting on elastic foundation have been examined
by Way?l, Levy? and many other authors. But the methods used by ‘them involve and require
considerable computation. Berger® - suggested that the strain energy due to the second strain invariant
of the middle surface strains may be neglected in analysing large deflection of plates having axis symmetric
deformation. Berger’s method reduces computation and although no complete explanation of this method
ig offered in, Berger has shown that the deflections and stresses obtained for circular plates under uniform load
are in good agreement with those found in practical analysis. Since then numerous problems have been .
solved with remarkable case and satisfactory approximation by using this method. Iwinski and Nowinski4
generalised the procedure of Berger to orthotropic plates and found out the deflections of circular and
rectangular ple tes under uniform load and various boundary conditions. By using this approximate method
Banerjee® obtained deflections of a circular orthotropic plate under a concentrated load at the centre.

, Berger’s technique of neglecting the second strain invariant in the middle plane has been applied by
Sinhaé to determine large deflection of circular and rectangular plates under uniform load and resting
on elasti¢ foundation.

In this paper large deflection of an equilateral triangular orthotropic plate, such as reinforced concrete,
resting on elastic foundation has been solved for a uniform load throughout the plate. Foundation is assumed
tobe such that its reaction is proportional to the deflection of the plate.

 NOTATIONS
@ = one-half of the length of each side of the plate
e, = first invariant of middle surface strains :
= & - B, in rectangular coordinates g , =
h = plate thickness '
K = foundation reaction per unit area per unit deflection

K7 = non-dimensional foundation modulus\= -—g— at

g = uniform lateral load
u;v = displacement along « and y direction respectively
V,V, = strain energy ‘
w = deflection in z-direction
e = direct strain
y = shear strain
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FORMULATION OF PROBLEM
For moderately large deflections, the strain displacement relationships are

- = au - .1 aw 2 . . P . ‘. - -
‘c, = -g'm- +?(§) . (1)
e By L(my
7 € —>g.y+ 2 3y (2)
and '
aw | qw

@)

Negleeting the second middle surface strain invariant, the strain energy due to bendmg and
stretching of the middle surface of the plate of thickness, h, can be written as

‘H[ () e e (5 ) e em( 25

Yzy,=—"+~—+

+ D, h* —=5—ey ]dmdy o \ (4)-
in which
E.B» E. 1 E”h’ G h” o
De=—g P= " D= = )
av 1 2 K (2 ,
o =4 Rty (5 aw) T(‘y‘) | ®)
. | D , , ’ |
.Kf:-ﬁ ‘ : - M

aud ¥, , ¥y, E', and & are constants to characterise the elastio properties of the material.

By adding the potential energy of the uniform normal load, ‘¢’ and of the foundation reaction, K
to the energy expresswn (4), the modified energy expression is obtamed as follows :

3w 3%w \2 . 2w \?
V—_”[ (awz) + 2D o +D(ay ) +4D’”(away) +

+D, 2 es,] dxdy,_—” qo dody + ” K w* dody | ®)

According to the principle of minimum potentla.l energy, the displacements satisfying the equili-
brium conditions make the potential energy ¥ minimum. Inorder for the integral of equation (8)
to be an extremum, its mtegrand F, must satisfy the following Euler’s variational principle :

F S (E) M)y B, E (), o or )
o~ aw\om) " ay\ow) T e\ ) T o Bey )t amy (e ) =0 O
3 (aF\ _ '
% () =0 (10)
and B .
3 aF) . /
E] (avy =0 , a1
Applying (10) and (11) to (8) respectively, wo got '
—335 (a) =0 e
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— =0 . : 13
2y @ N . (12
Thus .
=0 (14)

a normalised constant of integration to be determined. Applying (9) to (8) and considering (14), we get

o - -

Mo, o, 0w AD,+3Dy) 2w 12_9(92» g _éiw) E _ g
am,; + Kl a_?F + Dm axgpyg - kg axg’ + Kl ayz + Dz == s (15)
Introducing the notation ‘ .
} H == ‘Dl + 2 Dg, J
Equation (15) can be written as o
Hw s otw H N w _ 1202w ;azw)' E _ q 16
9 ot +H i t2p, PRk #\Fe Th Y +—IZ_'D;, (16)
For aslab with ﬁw&way reinforcement in the directions 2 and y, H can be taken as?’ |
H=(Dy D) -
Introducing now ' o o " "
Ty = &
D, \# : ST
| w=y(3) | . an
Equation (16) is reduced to the form | ' o I
2 z \
A TR " in which = 1_22(1
and’
: 9, 2
/ ) : = ——
/ . : \% awﬁl 3?/12
/ SOLUTION 0F PROBLEM i
Let the plate be in the form of an equilateral
./ triangle, ABC (Fig. 1) having each side of length 2a.

Let the centroid O be the origin, X-axis and Y-
axis perpendicular and parallel to the base B( fes-
pectively. If x;, y, be the cartesian coordinates of any
point, p, within the trianglep, p, p; be the three
perpendiculars from P on C4, AB and BC respec-
tively, and r be the radius of the inscribed circle, then

?. o : _ Py =r+ :";‘21""*“——%‘2/ 3

?

" P=r-’|-“ai1+y——1\/§‘ e
Fig. 1~ Equilateral triangular orthotropic plate. ~ 2 2 2
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Pa '—"m!, - )
P,+ Py -+ Py = 3r \/3a—K2 == constant,

* 3?

aw;’+ vt

a+aa+az 22 P ‘3:'
aP2 2 aP# aPiaPy  3PyaPy  aPsoPy

V=

-

Using the trilinear Oom-dinat;«ae8 P P P the deflection w can be taken in the form

N ) 2mrP1 | mnPy 2mrP3] o
kil 19
Z [ t+e K2 +oem Kz (19).

where A4, = a oconstant.
The above form of w satisfies the following boundary conditions of Slmply supported edges. :

Expanding the transverse uniform load g, into Fourier Sme series

¢ __Z 2q [ . 2mrP1 1+ sn 2n;P2 4 sin 2n§P3] e (20)

and substituting (19) and (20) into (18), we get

| “‘**an}?, ' [(2mr)  +'¢2 (12n1r) + K] | @)

ne=1 K2 I{2 Dm
To determiné «, Equation (6) is transformed into z;, y; coordinates in the following form
a‘h‘__ .3 v 1 (aw )2 1 ( aw)
12 Yy T oz T 3 % (22)
The boundary condltlons on u and vare
u=20at P,=20 (23)
\/3v+u——OatP—0 (24)
 A3v—u=03atP, =0 s . (25)
The following forms of u and v satisfy the above boundary conditions, B
- P,+B) | . .
“_Z'\/3Bﬂ[ 2"‘"( + 8) - gin 2m"(P1+Ps) ] (26)
KZ - Kg
® ’ : g -
1_,4 i 2‘.17(P1+P3) N 2ﬂW(P2+P3):| .
v = ——— By | sI0 ———5—— — 27
Z\(K; B..[sn K, - K, @n

in which B,, i8 a constant,
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Substxtutmg the expressions for %, v and w into (22) and integrating over the whole area of the Dplate,
the following equation determining « i8 obtained: - ; ,

. w0, . : .
o2h2 3 An2 n2 72 _ : » .
o . - (28)
- , n=1 ) . ) )

Thus w is completely deteri;{néd in the following form in z, y coondina.tes
' ) 1 e Y\ 2wy 1 o
"w=vA,,[2s1n2nrr(—3— —}——m) CO :'-;?l———F sin 2";77’(-?‘— W)] (29)
If D,=Dy= D,a—> 0, and K = 0, (19) and (21) give the deflection equation for an isotropic plate not

resting on the elastic foundation in the following form : .

_ qKpt [ . 2nwP o 2m o Py, . 2nm Py } \
w = Z A D [sm K, + sn ————-—-—K2 -+ sin —————-—Kz | (3€) |

n=1

The corresponding equation as obtained by S. Woinowsky-Krieger for & pla,te having each side of length
2a

——is

V3 |
w = 64 7] [ m*’ —3y% —a (2* + 97 + -—-a3 ] (% a,2——x2——yz) - (31)
At the origin (P = Py= Py), w is given by (30) as SN
4 \ . : :
S S e e
n=1 . ' . -

which is numerically equal to that obtained from (31) for ‘the plate having each side of length 2a as

S qa4
’ (w)x=y=0— 0 = ¥ p

NUMERICAL CALCULATION

To caleulate deflection atany point wwhm the plate, we have to start from (28) withan assumed value of

o
(« o) leading to the correspondlng valus of the load function D - Once this relationship is obtamnd the.
¥

corresponding deflection can be obtained from (19) Wlth the help of (21). S

At the origin maximum deflection is obtained and is given by

v . V . onw
-t (552, R B
- 16 74 nt 4 w2 n? o? o? N T
in which the non-dimensional foundation modulus
' K at ‘
K = D, (34)

For Kp = 0and Kp = 100 graphsare plotted in Fig. 2 éhowing the deﬂection——;:— at the centroid

of the plate against the loads, Fig 2. also contains a graph plotted according to the linear theory.
| 19
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2-41 i ) CONCLUSION
: LINEAR THEORY - ‘
2.0 : .~ FromFig. 2it is clear that design calculations
should-be made according to the non-linear theory,
oo ‘because deflections calculated according to small de-
K <0 flection theory will be far from the actual values for
2. % =00 higher values of load function. The effect of the foun-
= ' dation is to reduce the deflection for a glven value of
= load funetion.
08
, : ' Because the deflection, w, has been determined,
0-41 ~ bending momentsand stresses can be computed easily.
, ' The bending moments . M, and M, at the centroid
L Sy Y S v 50 of the plate are obtained as
qd/ogh | L
Fig. 2— Deflection curve,
20
® n sin —*—3‘—
M.,=4(1—|—vc)qazz : —_—
- / 16 7% nt 4 7% n? of a? ' 35
T n=1[ g T 3 T & ]’ . @
M, = E, M, , . T (36)

'y, i8 the Poisson’s ratio for concrete. -

For is0-tropic plate wibhoub elastic foundation and undergoing small deflection v;, =y, K1 =1

(35) and (36) 'lead to

Kp= 0, « >0 andfora pla.te having each s1de of length. —— '\/— ,
‘ ‘ g a? .
My=M,=(1+ v L | (37)
which is the same result obtained by Timoshenko?.
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