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Large deflection of an equilateral triangular orthotropic plate, resting on elastic foundation has been solved for s 
uniform load throughout the plate. General expressions for deflection and bending moment at a particular point 
have been obtained and the limiting values of the theoretical results have been verified with the known results for 
small deflection and without any elastic foundation of the corresponding isotropic plate. Theoretical results have also 
been presented in the form of graphs; 

Triangular reinforced concrete slabs are sometimes used as bottom slabs of bunkers. Thus the design 
of this type of structure is of practical interest for Defence. These slab8 may rest freely on soil or sand and 
generally are subjected to a uniform load. If the thickness of the slab is mal l  compared to the other dimen- 
sions, then it may be regarded as a thin orthotropic plate resting on elastic foundation and subjected to a 
uniform load. Within the elastic limit, the deflection of such plates may be large, i.e., the deflection is on 
the order of the thickness of the plate. When a plate undergoes large deflection, three differential equations 
for displacement and deflection may be written, but it is usually difficult to obtain solutions of these equa- 
t,ions because of their non-linear character. 

Various problems of large deflections of thin plates not resting on elastic foundation have been examined 
by Wayl, Levya and many other authors. But the methods used by "them involve and require 
considerable computation. Berg& suggested that the strain energy due to the second strain invariant 
of the middle surface strains may be neglected in analysing large deflection of plates having axis symmetric 
deformation. Berger's method reduces computation and although no complete explanation of this method 
is offered in, Berger has shown that the deflections and stresses obtained for circular plates under uniform load 
are in good agreement with those found in practical analysis. Since then mmerous problems have been 
solved with remarkable case and satisfactory approximation by using this method. Iwinski and Nowinski4 
generalised the procedure of Berger to orthotropic plates and found out the deflections of circular and 
rectangular pl? tes under uniform load and various boundary conditions. By using this approximate method 
Banerjees obtained deflections of a circular orthotropic plate under a concentrated load a t  the centre. 

Berger's technique of neglecting the second strain invariant in the middle plane has been applied by 
Sinha6 to determine large deflection of circular and ratangular plates under uniform load and resting 
on elastic foundation. 

In  this paper large deflection of an equilateral triangular orthotropic plate, such as reinforced concrete, 
resting on elastic foundation has been solved for a uniform load throughout, the plate. Foundation is assumed 
to be such that its reaction is proportional to the deflwtion of the plate. 

N O T A T I O N S  

a = one-half of the length of each side of the plate 
el = first invariant of middle surface strains 

= + Ey in recta~gular coordinates 
- 

h = plate thickness 
K = foundation reaction per unit area per unit deflection 

K 
KIP = non-dimensional foundation modulus = - a* D 

q = uniform lateral load 
zcj v = displacement along x and y direction respectively 

V, V ,  = strain energy 
w = deflection in z-direotion 
r = d-t strain 
y = shear strain 
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F O R M U L A T I O N  OF P R O B L E M  

F o i  moderately large deflections, the strain displacement relationships are 

and 

Ne&&ing the second middle surface strain invariant, the strain energy due to bending and 
stretching of the middle surface of the plate of thickness, h, can be written as 

Bpd #. , Fp .12" , and C;r are constants to chara'cterise the elastic properties of the material. 

B~ adding the potential energy of the uniform normal load, 'q' and of the foundation reaction, K 
to the energy expression (4), the modified energy exprmion is obtained as follows : 

Aoctording to the principle of minimum potential energy, the di~lplacements satisfying the equili- 
brium conditions make th6 potential energy V minimum. In order for the integral of equation (8) 
to be an ex tmum,  its integrand F, must satisfy the following Euler's variational principle : 

and 

Applying (lo) and (11) to  (8) respectively, we get 



Thus 

a normalised oonstant of "integration to  be determined. Applying (9). to (8) and considering (14), we get 

Introducing the notation . , , . 

H = Dl + 2 D*, 
Equation (15) can be written as 

For a slab with two-way reinforcement in the direotions z and y, H can be t&en aa7' 

, H = (Dm D#)) / 

Introduoing now 

Equation (1%) is reduoed to  the fonn 

in which 

a n d  

S O L U T I O N  OP P R O B L E M  

Let the plate be in the form of an equilateral 
triangle, ABC (Fig. 1) having each side of length 2a. 
Let the centroid 0 be the origin, X-axis and Y- 
axis perpendicular and para;llel to 'the base BC"res- 
pectively. If XI, y, be the cartesim coordinates of any 
point, p, within the trianglep, p2 ps be the three 
perpendicularsfrom P on CA, AB and BC respec- 
tively, and r be the radius of the inscribed circle, then 

Fig. 1- Equil&eral triangular orthotropic plate, 
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P8=C--sl 9 

p + p, = 3r = 1/@ = K, = c~nstallt~, PI+ n 

9 aa v4= -a+ a 
, 2% 

a4 a" a' as as --+ a* ---- 
a p t  a s  aP, aps apr . 3Pq aP8 spa aPi 

Using the trilinear Coordinates8 fi, pr fi the defleation w oan be taken in the form 

where A,, = a oonstant. 

m e  above form of w satisfies the following boundary conditions of simply supported edges : 
. 

w = 0 at PI =51: 0, P, = 0, P, = 3 

Expanding the tnnaarse uniform lord q, into Bourier Sine aeries 

2% rP2 2@nP, + & 
: [ s ing ; -  

RZ + sin 2nrP3 - ~2 I 
n= 1 , 

and substituting (19) and (20) into { I S ) ,  we get 

To determine a, Equation (6) is transformed into xl, yl coordinates in the following form 

The boundary conditions on u and v are 
% = O a t  Pa=@ 

. \ / F V + U = O ~ ~ P , = O  
@ o - u = ~ a t ~ ~ = O  

The 'following forms of u and v satisfy the above bo&dary conditions. 

2," F (Pl + P3) - sin - 2, - (P, + Ps) 
4 E, - I 



- 
DATTA : Deflection of a Triangular Orthotropio Plate 

Substituting the expressions for zc, v and w into (22) and integrating over the whole area of the plate, 
the following equation determining a is obtained: - 

>. 

Th'm w is completely deterrniiled in the following form in x, y coordinates 

If D, = Dy = D, a -+ 0, and K = 0, (19) and (21) give ths defleobion equation for an isotropic plate not 

resting on the elastic foundation in the follo~ing form : 

w = 4 K24 [sin 
2n rr PI 2% n Pz 2n rr P, + sin 

K2 
+ sin 

8 n.5 7r5 D 4 3  Kz 
n=l 

The corresponding equstion a.s 013tained by S. Toinowsky-Krieger for a plate having each side of length 

At the origin (PI = P2 = P,), w is given by (30) as - ,  - a  

2 n a '  
w = !la4 sin - = -039 - ?, 3 D .  (32) ' 

n== 1 \ 

which is numerically equal to thst obtained from(31) for the plate having each side of length 2aas , 

N U M E R I C A L  C A L C U L A T I O N  

To calculate deflection a t  any point within the plate, we have to s'tart from (28) with an assumed value of 

. Once this relationship is obtained, the (a a) leading to the corresponding valus of the load function - 
Dan . 

corresponding deflection can be obtained from (19) with the help of (21). 

At the origin maximtlm deflection is obtained and is given by 

r - 2@ rr 
sin - 

co,, 3 
= -  h n 4 rr2 n2 a2 aa i- K.-] (33) 

3 

in which 'the non-dirnensional foundation modulus 

K a4 K =- 
Dz (34) 

w 
For KF = 0 and K g  = 10P graphs are   lotted in Rig. 2 showing the deflection a t  the centroid 

of the plate against the loads. Rig 2. also kntains a graph plotted according to the linear theory. 
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C O N C L U S I O N  

FromPig. 2 it is clear that design calculations 
should be made according to the non-linear theory, 
because deflections calculated according to small de- 

'flection theory will be far from the actual values for 
higher values of load function. The effect of the foun- 

s - dation is to reduce the deflection for a given value of 
L load function. 

Because the deflection, tu, Jlas be& determined, 
bending moments and stresses can be computed easily. 
The bending moments Ma and M y  a t  t'he centroid 
of the plate are obtained as 

9dIooh , - 
Fig. 2- Deflection curve. 

Y I V  , I  

OD k sin --;-- 

My = K 1  Ma (36) 

V,  is the Poisson's ratio for concrete. - 

For isotropic plate without elastic foundation and undergoing smzll deflection V, = V, K 1  = 1, 

2a 
Kr = 0, cc -t 0 and for a plate having each side of length - , (35) and (36) lead to 

6 

which is the same result obtained by Timoshenko?. 
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