'QUASISTATIC RESPONSE OF AN INFINITE HOLLOW VISCOELASTIC CYLINDER UNDER
| TIME VARYING INTERNAL PRESSURE
| .R. N. Kananco & N. Parnaik
o Uhiversity College of Engineoring, Sambslpur
(Received 8 October 1978 ; revised 18 July 1974)
The quasistatic response of an infinite hollow visooelastis oylinder in. terms -of radial displacement, strain
" and stress ocomponents is derived from the fithdameéntals corresponding to a time varying internal pressure by

using Fourier transform method and as & specific examplé, the problem of an infinite hollow oylinder,
made of eherife and . subijest to - constant ‘internal pressure; hag been solved analytioally,

: . Analytical solutions for the uasistatié problems of viscoelastic tylinders have been presented earlier-
‘by Leet, Bland? and Chrisbaitsen’ using Laplace ttansform methiod. The solutions for these problems
are all based on the elastic-viscoelastic correspondence principle. ‘

i1 The present paper deals:with the solutioh expresded in the form of displacement, strain and stress
components within an infinite hollow viscoelastic cylinder subject to time varying internal pressure. The

ourior transform methed Which. has been wuséd here to obtain the solution, is considered more convenient

dr obtaining the quantitdtivﬁbohiﬁ(_m of thie problems concerning visboelastic inaterials with the properties
expressed as complex function of frequency.. ‘
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FIBLD EQUATIONS
 In polar cylindrical coordinates r, 6, z with axial symmetry the nontrival elastic equation of
{“fdotion is given by : o : o » :
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. where, % = (7, t)is the radial displacement,. Using Fo_u_rigr transform method, the equationis converted to
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where #@=! (t; w); w being tzansform parameter. 'Straiﬂ-fﬁspfacemerfﬁ and stress-strain relation are given
by , ‘ '
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where ‘ : :
= Transformed shear medulus = p* (iw)

= "Trafisformed Poisson’s 1atio’

= & 1+ €09 = Transformed Ist invarient of strain
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SOLUTIONS FOR DISPLACEMENT STRAIN AND STRESS COMPONEJNTS
* . The solution, for . is obtained from (2) as ’ ' ‘

i = ér“—t— ~7Q

)

63



)

Dar. 8ax. J., Vor. 25, Avat, 1076 -

where the constants ¢ and are determined from the boundary conditions given by o
S . o (@ w) = P(w) or B on (b, w) = 0 | 8
‘a’ and ‘6" are internal and external radius respectively. Using (8) i :

0=- (—‘“—w,f;?) a-md @
| == (wEa)E T
On using (9) and (10), équations (8), (4), (5) s‘:d (6;1;eld:‘);lutions in transformed form
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The solutions for an ebonite cylinder subject to constant internal pxessurel 'ﬁ.’ can be obtained in
following manner, - L

w , . S - v
Plw) = f poH(t)e"'""‘dt= (%”—); where H) =1, t20=0;t<0:
0 .
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B o= p* (W) = K @0 U

determined by Lethersich and reported by Bland?

v == constant Poisson’s ratio .

By using the above relations and the Fourier inversion formula along with the table of Fourier trans-

~ forms?, the time dependent solutions for displacement, strain and stress can be obtained as

. u(r,t)=G1(r + T)t’ (7
where '
a? Po . ’ ' . i
(—v) = Gamma function of (— ) .
b . : -
Choosing p = —2— , B = o the displacement and strain components can be expressed in non-

dimensional form as
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Similarly strain compoments are

stress components are

The geometry of the cylinder is such that z =

) R?
u* (p, t)= uo(: ;‘)' = (P + —P") v
2
& (p, t) = igT’E)— = (1_—%—) g
. \ R?
c00™ (p, t)= _a@.é%ﬂ_: (1+ __.2_) v .
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NUMERICAL COMPUTATIONS
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= 3.»=0.014. Since the response is sufficiently

slow with respect to time calculation of radial displacement u*( p, ¢), strainjcomponents e*,, (p, 1) & *66 ( p, )
are performed at different times between 10° sec (approximately one day after loading) and 107 sec, and at
different radial locations. The calculated results are tabulated in Tables 1, and 2.

TaBLE 1

RADIAL DISPLACEMENT U* CALOULATED AT DIFFERENT TIMES AND AT DIFFERENT RADIAL POINTS

p=2'5

¥ (weo) p=1 p=1'5 p=2 p=3:0 '
105 C1e17 82 76 5:38 4-675
1058 11-94 8:36 7-75 55 4-75
108 ' 12-13 8:5 79 5:6 4:85
1085 12-32 N 8:65 8:05 5-67 4-9256
107 12-52. 8:76 8:15 5-76 5:00
TaBLE 2
’ * »
STRAIN COMPONENTS, ek © 00 _OALOULATED AT DIFFERENT TIMES AND AT DIFFERENT RADIAL POINTS
‘ p=1 p=2 p==3
t (se0) -
'*rr ‘*90 e*" "‘00 ‘*rr <t a0

108 —9:35 “ 1117 —1-46 3-8 0 2-35
105+ \ —9-5 11-94 —1.49 3-875 0 2-38
10° —9-7 12-13 -+ —1-51 3-95 0. 2:43 -
10¢-8 . —9-85 12-32 —1-5456 4:02 0 2.47
10? —10-0 12-52 —1:562 ~ 4-078 0 2-51

. In the present problem which relates to the viscoelastic medium, it is seen that even though the loading
is time-independent the response is time-dependent. This can be attributed to the dependence of the pro-
perties of viscoelastic material on frequency on time. This time dependent strain or displacement is called the
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cteep. It is further notwed that wx:amtm‘ Gf strath aomponent with txme =3 partwulm- radxal locatm s
for the viscoelastio cylinder wider tonstant internal regsure | bears an- analogy to one suggested by Gold-
hoft® for C. -—-—Mo«—? steel at 538"0 umk{' con.sﬁan . P
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