STUDIES IN SULPHONAMIDES-PART VIII

Synthesis of 1-aryl-3-methyl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones and evaluation of their antibacterial properties

CHANDRA MOHAN, G. S. SAHARIA & H. R. SHARMA

University of Delhi, Delhi

(Received 9 April 1974)

1-Aryl-3-methylpropane-1, 3-diones, viz., 1-(4¹ chlorophenyl), 1-(4²-bromophenyl)-1-(4²-chloro-3²-methyl-phenyl) sn 1 l-biphenyl-3-methylPropane-1, 3-dions have been synthesised and coupled with different dinzotise. sulphonamied, bases in presence of sodium acetate to furnish the respective 1-aryl-3-methyl-2-(subsituted sulphonamidobenzeneazo propane-1, 3-diones. All these azo compounds have been tested in vitro for their antibacterial properties aginst S. aureus and E. coli and majority of these are found active against S. aureus.

Some β -diketones are reported to exhibit phenol coefficients against B. *typhosus* and also found to be active against *Staphylococcus aureus*¹. Again simple azo compounds and those derived from sulphonamides show a wide divergence of activity up to 100 fold than the parent compounds ²,³.

 β -Diketones readily couple with diazotised sulphonamide bases to furnish the azo compounds which are reported to be biologically active⁴. In view of the encouraging results obtained in respect of their biological properties, the work was undertaken to prepare 1-aryl-3-methylpropane-1, 3-diones and then couple them with a wide variety of diazotised sulphonamide bases. The main objective of taking up this work was to study the effect of (i) replacing one of the phenyl rings of the dibenzoylmethanes by a methyl group, (ii) the presence of electron attracting groups in the phenyl ring of the various benzoylacetones on the rate of the coupling reactions and make a comparison amongst these and with those prepared from dibenzoylmethanes ^{4,5}. The second object was to study their pharmacological properties as the azo dyes in general have been widely used as valuable therapeutics.

Besides their uses in medicine and dye industry, the pyrazole derivatives have of late been reported to be potential high explosives.⁶ The bacteriological study of all these compounds was carried out using the cup-plate agar diffusion method against two organisms, S. aureus and E. coli.

EXPERIMENTAL PROCEDURE

Preparation of 1-(4'-Chloro-3'-methylphenyl)-3-methyl propane-1, 3-dione

To a R. B. flask (1 lit) fitted with a double-walled reflux condenser and a guard tube, containing dry ether (300 ml) was added sodium $(2 \cdot 3 \text{ g}; 0 \cdot 1 \text{ mol})$ followed by a mixture of ethyl acetate $(26 \cdot 4 \text{ g}; 0 \cdot 3 \text{ mol})$ and 4-chloro-3-methylacetophenone $(16 \cdot 9 \text{ g}; 0 \cdot 1 \text{ mol})$ with frequent shaking and cooling. The contents were refluxed for 5-6 hrs, cooled, added to ice-cold water, extracted with ether, and the ethereal layer rejected. The aqueous layer was acidified with acetic acid and extracted with ether, the ethereal layer shaken with a saturated solution of cupric acetate and copper salt of the β -diketone which separated out was filtered, washed with ether, finally with water and then decomposed with dilute sulphuric acid. Pure 1-(4'-chloro-3'-methylphenyl)-3-methylpropane-1,-3,-dione was crystallised from ethanol as a light brown solid, m.p. 59°, (Yield : $10 \cdot 1 \text{ g}; 48\%$).

(Found : C-62.6; H- 5.1% $C_{11} H_{11} O_2 C1$ requires C-62.7; H-5.2%).

Its alcoholic solution gave violet colouration with ferric chloride solution.

All the other 1-aryl-3-methylpropane-1, 3-diones ⁷⁻⁹ and sulphonamides¹⁰⁻²⁸ required for this work were prepared by the standard methods.

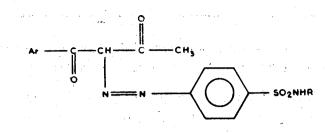


Fig. 1- General structure of azo-compound of benzoylacetones

Synthesis of 1-aryl-3-methyl-2-(substituted sulphonamidonbenzeneazo) propane-1, 3-diones

An ice-cold solution of 1-aryl-3-methylpropane-1, 3-dione (0.002 mol) in ethanol or acetone containing sodium acetate was mechanically stirred, a diazotised solution of sulphonamide (0.002 mol) was gradually added during stirring and cooling $(0-5^\circ)$. The yellow coloured azo compound was precipitated by the addition of ice-cold water and after stirring for further 10 minutes, the solid product was filtered, washed well with water, and dried. Pure 1-aryl-3-methyl-2- (substituted sulphonamidobenzeneazo) propane-1, 3-dione of the type as shown in Fig. 1 was crystallised from ethanol or glacial acetic acid or DMF or from a mixture of any of the above two solvents. All the azo compounds synthesised in the above manner are included in Tables 1 to 4.

The yields of the azo compounds ranged between 68 and 81% and the rate of coupling reaction increased when electron attracting groups were present in the phenyl ring of benzoylacetones thereby giving higher yields. The replacement of one of the phenyl rings of dibenzoylmethanes by the methyl group as in the case of benzoylacetones caused a decrease in the rate of coupling reaction when lower yields were obtained as compared with the yields with the analogous dibenzoylmethanes.

R		M.P.	Colour			Percentage				Antibacterial activit	
	°C		%		Found		Requires		S. aureus	E. coli	
					C	H	С	H	\$		
H		204	Y	75	C ₁₆ H ₁₄ O ₄ N ₃ SCl	50.8	3.7	50•6	3.7	++	+
Acetyl		206	Y	77	C18 H16 O5 N3 SCI	51.0	3.9	51 • 2	3.8	+	
Phenyl		147	Y	74	C22 H18 O4 N3 SCI	58 •0	4.1	57.9	3.9	+	· <u> </u>
O-Methylphenyl	· · · · ·	164	Y	70	C23 H20 O4 N3 SCI	58.6	4-2	58.8	4.3	+	
O-Methoxyphenyl		125	¥	77	C23 H20 O5 N3 SCI	57.0	4 ∙0	56·8	4.1	+	
p.Methoxyphenyl		157	Y	75	C23 H20 O5 N3 SCI	56·8	4.4	56.8	4.1	+	
Guanidyl		24 0	X	:71	C ₁₇ H ₁₆ O ₄ N ₅ SCl	48.7	4.0	48 · 9	3.8	++	+
a-Pyridyl		131	Y,	72	$C_{21} H_{17} O_4 N_4 SCI$	55·1	3.9	55.2	3.7	++	· [+
Pyrimidyl		237	Y	85	C_{20} H_{16} O_4 N_5 SCl	$52 \cdot 4$	3.5	$52 \cdot 4$	3.5	· +.	
4,6-Dimethylpyrimidyl		198	Y	78	C22 H20 O4 N5 SCl	54 · 5	4 ∙0	$54 \cdot 3$	4 · 1	+	+
2,6-Dimethylpyrimidyl		230	Y	78	C22 H20 O4 N5 SCI	54·1	4•3	54.3	4.1	++	· · ·
2,6-Dimethoxypyrimidyl	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	170	Y	82	C22 H20 O6 N5 SCI	51.3	4∙0	$51 \cdot 0$	3.9	++	
Methyl-1, 3, 4-thiadiazolyl	1. A	213	Y	80	C19 H16 O4 N5 S2CI	47.7	3.6	47.7	3.3		,
² -Butylcarbamide	1	161	Y	81	C21 H23 O5 N4 SCI	$52 \cdot 5$	4.7	$52 \cdot 7$	4•8	+	

(A; Ar = 4'—Chlobophenyl)

Y = Yellow, OY = Orange yellow; O = Orange; YB = Yellowish brown; B = Red; YO = Yellowish Orange

TABLE	2
-------	---

1-(4'-BROMOPHENYL)-3-METHYL-2-(SUBSTITUTED SULPHONAMIDOBENZENEAZO) FROPANE-1, 3-DIONDS

(A ; Ar = 4 ' BROMOPHENYL)

R		M.P. Colour Yield °C %		ld Molecular formula		Perc	entag	Antibacterial activity		
	U U			10110014	Found		Requires			<u> </u>
			•	•	СН	C	н	S aureus	E. coli	
		.		· · · · · · · · · · · · · · · · · · ·	•	<u> مىسىنى</u>	·····		<u></u>	
H	217	Y	75	C16 H14 O4 N3 SBr	45.5		45.		+	
Acetyl	218	Y Y	76	C ₁₈ H ₁₆ O ₅ N ₃ .SBr	46.3	3.5	46 •3			هيت ا
Phenyl	164	Y	73	C ₂₂ H ₁₈ O ₄ N ₃ SBr	53.0		52.8		+	+
o-Methylphenyl	158	Y	71	C ₂₃ H ₂₀ O ₄ N ₃ SBr	$53 \cdot 4$				+	
-Methoxyphenyl	175	Y	76	C23 H20 O5 N3 SBr	52.0	4.0	52.0		+	
p-Methoxyphenyl	170	Ý	75	C ₃₃ H ₂₀ O ₅ N ₃ SBr	52.1	4.1	52.0			
Guanidy	212	Ŷ	70	C_{17} H ₁₆ O ₄ N ₅ SBr	44.0	3.7	43.8		+	
a-Pyridyl Deministration	187 242	X Y	70 83	C_{91} H ₁₇ O ₄ N ₄ SBr	50.3	$3 \cdot 4 \\ 3 \cdot 1$	50.3			-
Pyrimidyl 4,6-Dimethylpyrimidyl	192	Ŷ	77	C_{20} H ₁₆ O ₄ N ₅ SBr	48·0 49·8		47·8		. —	+
2, 6 -Dimethylpyrimidyl	237	Ý	76	C_{22} H ₂₉ O ₄ N ₅ SBr	49.6		49.4			
2, 6 -Dimethoxypyrmidyl	142	Ý	80	$\begin{array}{c} C_{20} \ H_{20} \ O_4 \ N_5 \ SBr \\ C_{22} \ H_{20} \ O_6 \ N_5 \ S^2Br \end{array}$	47.1	4.1	47.		+	+
5-Methyl-1, 3, 4-thiadiazolyl	216		78	$C_{19} H_{16} O_4 N_5 S_9 Br$	43.9	3.5	43		++	-
n-Butylearbamido	167	Ŷ	79	$C_{21} H_{23} O_5 N_4 SBr$	48.2	4.7	48.		TT.	

TABLE 3

š,

1-(4'-OHLORO-3/'-METHYLPHENYL)-3-METHYL-2-(SUBSTITUTED SULPHONAMIDOBENZENEAZO) PROPANE-1, 3-DIONES

(A; Ar = 4' - OHLORO - 3' - METHYLPHENYL)

R	М.Р. °С			Percentage				Antibacterial activity		
		-	%		Found		Requires		S. aureus	E. coli
					C	Ħ	C	H		
н	212	Y	72	C ₁₇ H ₁₆ O ₄ N ₈ SCl	52·0	4.3	51.8		<u> </u>	·
Acetyl Phenyl	$212 \\ 180$	Y OY	75 72	$C_{19} H_{18} O_5 N_3 SCl C_{28} H_{20} O_4 N_3 SCl$	52·4 58·8	4·1 4·5	52 · 3 58 · 8	$4 \cdot 1 \\ 4 \cdot 3$	+++++++++++++++++++++++++++++++++++++++	+
o-Methylphenyl	189	Y	70	C_{24} H ₂₂ O_4 N ₃ SCl	59·6	4.8	59.6	4.6	÷	
o-Methoxyphenyl p-Methoxyphenyl	112 188	OY O	79 74	$\begin{array}{c} C_{24} H_{22} O_5 N_3 SCl \\ C_{24} H_{22} O_5 N_3 SCl \end{array}$	57·5 57·9	4.5 4.5	57·7 57·7	4·4 4·4	++	+
Guanidyl	240	Y	72	C18 H18 O4 N8 SCI	50.0	4.2	49.6	4.1		-
a-Pyridyl	$220 \\ 232$	Y Y	71 79	C_{22} H ₁₉ O ₄ N ₄ SCl	56·0 53·5	4·2 3·8	$56 \cdot 1 \\ 53 \cdot 4$	4∙0 3∙8		
Pyrimidyl 4, 6-Dimethylpyrimidyl	232 218	Ý	78	$\begin{array}{c} C_{21} H_{18} O_4 N_5 SCl \\ C_{23} H_{22} O_4 N_5 SCl \end{array}$	55.5	$4 \cdot 2$	55.3	4.4	+	+
2, 6-Dimethylpyrimidyl	234	Y	70	Cas Has O4 N5 SCI	55.1	4.6	55.3	4.4	+	-
2, 6-Dimethoxypyrimidyl	190	Y	77	C_{23} H_{22} O_6 N_5 SCl	52.0	4.0	51.9	4·1 4·6	. +	+
5-Methyl-1, 3, 4-thiadiazolyl n-Butylcarbamide	$218 \\ 182$	Y Y	78 74	$\begin{array}{c} C_{20} H_{18} O_4 N_5 S_2 Cl \\ C_{22} H_{25} O_5 N_4 SCl \end{array}$	61 · 5 53 · 8	$\frac{4.5}{5.0}$	61 · 3 53 · 6	4·0 5·1		

EVALUATION OF THE ANTIBACTERIAL PROPERTIES

All the azo compounds have been tested in vitro⁵ against two organisms S. aureus and E. coli at two different concentrations of 500 μ g/ml and 1000 μ g/ml and the results with the concentrations of 500 μ g/ml have been entered in Tables 1-4.

The conclusion drawn on the basis of the results of the antibacterial tests is that if the phenyl ring of the benzoylacetone contains electron withdrawing group or atoms, the azo compounds synthesised by coupling with diazotised sulphanilamide or sulphacetamide exhibit activity against S. aureus but not against *E.coli*. On stepping down the series of electronegativity, the activity against S. aureus also vanishes out. The introduction of the phenyl or substituted phenyl groups at the N^1 atom of the sulphonamide has no effect on the activity; however, the introduction of a heterocyclic ring and particularly those having more than one hetero

TABLE 4

1-BIPHENYL-3-METHYL-2-(SUBSTITUTED SULPHONAMIDOBENZENEAZO) PROPANE-1, 3DIONES

(A; Ar = BIPHENYL)

R	М.Р. °С	Colour	Yield %	Molecular formula	Percentage				Antibacterial activity		
					Four C	nd H	Requ C	uires H	S. aureus	E. coli	
H Acetyl Phenyl o-Methylphenyl o-Methoxyphenyl g-Methoxyphenyl Guanidyl a-Pyridyl Pyrimidyl 4, 6-Dimethylpyrimidyl 2, 6-Dimethoxypyrimidyl 2, 6-Dimethoxypyrimidyl 5-Methyl-1, 3, 4-thiadiazolyl n-Butylcarbamido	237 235 189 188 165 178 264 246 265 220 187 174 196 192	Y Y R YB YO Y Y YO OY Y Y Y Y	73 76 72 69 78 74 72 70 81 77 72 80 80 77	$\begin{array}{c} C_{22} \ H_{19} \ O_4 \ N_8 \ S \\ C_{24} \ H_{21} \ O_5 \ N_8 \ S \\ C_{35} \ H_{22} \ O_4 \ N_3 \ S \\ C_{29} \ H_{25} \ O_4 \ N_3 \ S \\ C_{29} \ H_{25} \ O_4 \ N_3 \ S \\ C_{29} \ H_{25} \ O_5 \ N_3 \ S \\ C_{29} \ H_{25} \ O_4 \ N_5 \ S \\ C_{29} \ H_{22} \ O_4 \ N_5 \ S \\ C_{28} \ H_{21} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{28} \ H_{25} \ O_4 \ N_5 \ S \\ C_{29} \ H_{26} \ O_4 \ N_5 \ S \\ C_{29} \ H_{26} \ O_4 \ N_5 \ S \\ C_{29} \ H_{26} \ O_4 \ N_5 \ S \\ C_{29} \ H_{26} \ O_6 \ N_6 \ S \\ C_{27} \ H_{28} \ O_5 \ N_4 \ S \end{array}$	$\begin{array}{c} 62 \cdot 0 \\ 67 \cdot 5 \\ 68 \cdot 0 \\ 66 \cdot 2 \\ 66 \cdot 1 \\ 60 \cdot 0 \\ 65 \cdot 0 \\ 62 \cdot 6 \\ 64 \cdot 1 \\ 63 \cdot 8 \\ 60 \cdot 1 \\ 58 \cdot 0 \end{array}$	$\begin{array}{c} 4 \cdot 3 \\ 4 \cdot 6 \\ 4 \cdot 8 \\ 5 \cdot 6 \\ 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 6 \\ 4 \cdot 5 \\ 5 \cdot 6 \\ 3 \cdot 6 \\ 5 \cdot 6 \end{array}$	62.7 62.2 67.6 68.1 66.0 59.6 65.0 62.5 63.8 63.8 60.1 57.8 62.3	$\begin{array}{c} 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 6 \\ 4 \cdot 7 \\ 4 \cdot 7 \\ 4 \cdot 7 \\ 4 \cdot 5 \\ 4 \cdot 2 \\ 4 \cdot 7 \\ 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 5 \\ 4 \cdot 6 \\ 5 \cdot 4 \end{array}$		+++++++++++++++++++++++++++++++++++++++	

atom have a definite effect on the antibacterial activity. The azo compounds synthesised by coupling diazotised N'-5-methyl-1, 3, 4-thiadiazol-2-yl sulphanilamide with all the benzoylacetones studied were found to possess a high degree of activity against S. *aureus* and either no or very feeble activity against E. *coli* except the compound 5-methyl-1, 3, 4-thiadiazolyl in Table 3 which has no activity against either of the organisms.

REFERENCES

- 1. HURD, C. D. & KELSO, C. D., J. Amer. Chem. Soc., 62 (1940), 2184.
- 2. MANGINI, A., Boll. Sci. facolta, chim. ind., Bologna, 4 (1940), 127, C.A., 84 (1940), 7286*.
- 3. SAH, P. P. T., ONETO, J. F. & SAH, H. Arzneimittel-Forsch, 10 (1960), 553, C.A., 54 (1960), 23195e;
- 4. SAHABIA, G. S. & SHARMA, H. R., Def. Sci. J., 22 (1972) 135, 139.
- 5. (MBS.) AJAYA KABBA, SAHARIA G. S., & SHARMA H. R., Def. Sci. J., 25 (1975), 25.
- 6. COBUEN, M. D., J. Hetero. Chem., 7 (1970), 345.
- 7. HUSER, C. R., SWAMER, F. W. & RINGLER, B. I., J. Amer. Chem. Soc., 70 (1948), 4025.
- 8. HANUS, J. JILEK, A., & LUKAS, J. Coll. Czech. Chem. Comm., 1 (1929) 392; C.A. 23 (1929), 5175.
- 9. SPRAGUE, J. M. BEOKHAM, L. J. & ADKINS, H., J. Amer. Chem. Soc., 56 (1934), 2665.
- 10. CROSSLEY, M. L. NOBTHEY, E. H. & HULTQUIST, M. E. J. Amer. Chem. Soc., 61 (1939), 2950 : 62 (1940) 372, 532, 1415.
- 11. MARSHALL JR., E. K., BRATTON, A. C. WHITE, H. J. & LITCHFIELD JR. J. T. Bull. Johns Hopkins Hosp., 57 (1940), 163.
- 12. WINTERBOTTOM, R., J. Amer. Chem. Soc., 62 (1940), 160.
- 13. SHEN, C. W. & CHEN, H. N. J. Chinese Chem. Soc., 8 (1941) 4.
- 14. ROBLIN JR. R. O., WINNER, P. S. & ENGLISH. J. P., J. Amer. Chem. Soc., 64 (1942), 567.
- 15. GYSIN, H., U.S. Pat., 2' 351, 333 (1944)
- 16. HARTMANN, M., CUENI, F. DRURY J. & MEYENOURG, H. V., U. S. Pat., 2,386, 852, (1945).
- 17. ROSE, F. L. & SWAIN, G., J. Chem. Soc., (1945), 689.
- 18. WINNER, P. S. & FAITH, H. E., U. S. Pat., 2, 380, 006 (1945).
- 19. BIRTWELL, S., HAWORTH, E., ROSE, F. L. SWAIN, G. & VASEY, C. H., J. Chem. Soc., (1946), 491.
- 20. HUBNER, O., U. S. Pat., 2, 447, 702, (1948).
- 21. HARTMANN, M. & MEYENBERG, H. V. U. S. Pat., 2, 435, 002, (1948).
- 22. LOOP, W. & LUHRS. E., Ann. 580 (1953), 225.
- 23. KLOTZEB, W. & BRETSOHNEIDER, H., Monatsh 87 (1956), 136.